Chiến lược tăng cường độ bền của nhà máy tế bào vi sinh vật
Tóm tắt
Các nhà máy tế bào vi sinh vật đã đạt được nhiều tiến bộ trong việc sản xuất nhiên liệu, sản phẩm tự nhiên và hóa chất số lượng lớn. Tuy nhiên, trong quá trình lên men công nghiệp, các tế bào vi sinh vật thường phải đối mặt với nhiều rối loạn có thể dự đoán và ngẫu nhiên do độc tính của các metabolite trung gian hoặc sản phẩm cuối cùng, gánh nặng chuyển hóa và môi trường khắc nghiệt. Những rối loạn này có thể giảm năng suất và mật độ sản phẩm. Do đó, độ bền của các chủng vi sinh vật là rất cần thiết để đảm bảo hiệu quả sản xuất đáng tin cậy và bền vững. Trong bài đánh giá này, các chiến lược hiện tại để cải thiện độ bền của chủ nhà đã được tóm tắt, bao gồm các phương pháp kỹ thuật dựa trên kiến thức, chẳng hạn như các yếu tố phiên mã, màng/ transporter và protein phản ứng stress, cùng với quá trình tiến hóa thích nghi truyền thống dựa trên chọn lọc tự nhiên. Thiết kế chủ vi sinh vật công nghiệp bền vững hỗ trợ bởi tính toán (ví dụ: GEMs, học sâu và học máy) cũng đã được giới thiệu. Hơn nữa, các thách thức và viễn cảnh trong tương lai về cải tiến độ bền của chủ vi sinh vật đã được đề xuất nhằm thúc đẩy phát triển các nhà sản xuất sinh học xanh, hiệu quả và bền vững.
Từ khóa
Tài liệu tham khảo
Alper H, Stephanopoulos G. Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng. 2007;9:258–67.
Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science. 2006;314:1565–8.
Asnicar F, Thomas AM, Passerini A, Waldron L, Segata N. Machine learning for microbiologists. Nat Rev Microbiol. 2023:37968359. https://doi.org/10.1038/s41579-023-00984-1.
Bae J, Jin S, Kang S, Cho B-K, Oh M-K. Recent progress in the engineering of C1-utilizing microbes. Curr Opin Biotechnol. 2022;78:102836.
Basak S, Geng H, Jiang R. Rewiring global regulator cAMP receptor protein (CRP) to improve E. coli tolerance towards low pH. J Biotechnol. 2014;2014(173):68–75.
Besada-Lombana PB, Fernandez-Moya R, Fenster J, Da Silva NA. Engineering Saccharomyces cerevisiae fatty acid composition for increased tolerance to octanoic acid. Biotechnol Bioeng. 2017;114:1531–8.
Bock C, Datlinger P, Chardon F, Coelho MA, Dong MB, Lawson KA, Lu T, Maroc L, Norman TM, Song B, Stanley G, Chen S, Garnett M, Li W, Moffat J, Qi LS, Shapiro RS, Shendure J, Weissman JS, Zhuang X. High-content CRISPR screening. Nat Rev Methods Primers. 2022;2:8.
Caspeta L, Chen Y, Ghiaci P, Feizi A, Buskov S, Hallström BM, Petranovic D, Nielsen J. Altered sterol composition renders yeast thermotolerant. Science. 2014;346:75–8.
Catoiu EA, Phaneuf P, Monk J, Palsson BO. Whole-genome sequences from wild-type and laboratory-evolved strains define the alleleome and establish its hallmarks. Proc Natl Acad Sci. 2023;120:e2218835120.
Chen T, Wang J, Yang R, Li J, Lin M, Lin Z. Laboratory-evolved mutants of an exogenous global regulator, IrrE from Deinococcus radiodurans, enhance stress tolerances of Escherichia coli. PLoS ONE. 2011;2011(6):e16228.
Chen K, Gao Y, Mih N, O’Brien EJ, Yang L, Palsson BO. Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation. Proc Natl Acad Sci USA. 2017;114:11548–53.
Chen Y, Boggess EE, Ocasio ER, Warner A, Kerns L, Drapal V, Gossling C, Ross W, Gourse RL, Shao Z, Dickerson J, Mansell TJ, Jarboe LR. Reverse engineering of fatty acid-tolerant Escherichia coli identifies design strategies for robust microbial cell factories. Metab Eng. 2020;61:120–30.
Chen R, Gao J, Yu W, Chen X, Zhai X, Chen Y, Zhang L, Zhou YJ. Engineering cofactor supply and recycling to drive phenolic acid biosynthesis in yeast. Nat Chem Biol. 2022;18:520–9.
Cheng H, Sun Y, Chang H, Cui F, Xue H, Shen Y, Wang M, Luo J. Compatible solutes adaptive alterations in Arthrobacter simplex during exposure to ethanol, and the effect of trehalose on the stress resistance and biotransformation performance. Bioprocess Biosyst Eng. 2020;43:895–908.
Cho JS, Kim GB, Eun H, Moon CW, Lee SY. Designing microbial cell factories for the production of chemicals. JACS Au. 2022;2:1781–99.
Chong HQ, Geng HF, Zhang HF, Song H, Huang L, Jiang RR. Enhancing E. coli isobutanol tolerance through engineering its global transcription factor cAMP receptor protein (CRP). Biotechnol Bioeng. 2014;111(4):700–8.
Costello Z, Martin HG. A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data. NPJ Syst Biol Appl. 2018;4:19.
Cunha JT, Costa CE, Ferraz L, Romaní A, Johansson B, Sá-Correia I, Domingues L. HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms. Appl Microbiol Biotechnol. 2018;102:4589–600.
Darbani B, Stovicek V, van der Hoek SA, Borodina I. Engineering energetically efficient transport of dicarboxylic acids in yeast Saccharomyces cerevisiae. Proc Natl Acad Sci. 2019;116:19415–20.
de Siqueira GMV, Silva-Rocha R, Guazzaroni M-E. Turning the Screw: engineering extreme pH resistance in Escherichia coli through combinatorial synthetic operons. ACS Synth Biol. 2020;9:1254–62.
Deng C, Lv X, Li J, Zhang H, Liu Y, Du G, Amaro RL, Liu L. Synergistic improvement of N-acetylglucosamine production by engineering transcription factors and balancing redox cofactors. Metab Eng. 2021;67:330–46.
Ding Q, Liu LM. Reprogramming cellular metabolism to increase the efficiency of microbial cell factories. Crit Rev Biotechnol. 2023:1–18.
Doench JG. Am I ready for CRISPR? A user’s guide to genetic screens. Nat Rev Genet. 2018;19(2):67–80.
Du B, Yang L, Lloyd CJ, Fang X, Palsson BO. Genome-scale model of metabolism and gene expression provides a multi-scale description of acid stress responses in Escherichia coli. PLOS Comput Biol. 2019;15:e1007525.
Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, Hadi MZ, Mukhopadhyay A. Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol. 2011;7:487.
Galanie S, Thodey K, Trenchard IJ, Filsinger Interrante M, Smolke CD. Complete biosynthesis of opioids in yeast. Science. 2015;349:1095–100.
Geng H, Jiang R. cAMP receptor protein (CRP)-mediated resistance/tolerance in bacteria: mechanism and utilization in biotechnology. Appl Microbiol Biotechnol. 2015;99:4533–43.
Guo S, Yi X, Zhang W, Wu M, Xin F, Dong W, Zhang M, Ma J, Wu H, Jiang M. Inducing hyperosmotic stress resistance in succinate-producing Escherichia coli by using the response regulator DR1558 from Deinococcus radiodurans. Process Biochem. 2017;61:30–7.
Guo XW, Zhang Y, Li LL, Guan XY, Guo J, Wu DG, Chen YF, Xiao DG. Improved xylose tolerance and 2,3-butanediol production of Klebsiella pneumoniae by directed evolution of rpoD and the mechanisms revealed by transcriptomics. Biotechnol Biofuels. 2018;11:307.
Hassan N, Anesio AM, Rafiq M, Holtvoeth J, Bull I, Haleem A, Shah AA, Hasan F. Temperature driven membrane lipid adaptation in glacial psychrophilic bacteria. Front Microbiol. 2020;11:824.
He H, Yang M, Li S, Zhang G, Ding Z, Zhang L, Shi G, Li Y. Mechanisms and biotechnological applications of transcription factors. Synth Syst Biotechnol. 2023;8:565–77.
Hossain GS, Saini M, Miyake R, Ling H, Chang MW. Genetic biosensor design for natural product biosynthesis in microorganisms. Trends Biotechnol. 2020;38:797–810.
Jia H, Sun X, Sun H, Li C, Wang Y, Feng X, Li C. Intelligent Microbial Heat-Regulating Engine (IMHeRE) for improved thermo-robustness and efficiency of bioconversion. ACS Synth Biol. 2016;5:312–20.
Jiang X-R, Yan X, Yu L-P, Liu X-Y, Chen G-Q. Hyperproduction of 3-hydroxypropionate by Halomonas bluephagenesis. Nat Commun. 2021a;12:1513.
Jiang Z, Cui Z, Zhu Z, Liu Y, Tang Y, Hou J, Qi Q. Engineering of Yarrowia lipolytica transporters for high-efficient production of biobased succinic acid from glucose. Biotechnol Biofuels. 2021b;14:145.
Klein-Marcuschamer D, Stephanopoulos G. Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains. Proc Natl Acad Sci. 2008;105:2319–24.
Kocabaş P, Çalık P, Çalık G, Özdamar TH. Analyses of extracellular protein production in Bacillus subtilis—I: Genome-scale metabolic model reconstruction based on updated gene-enzyme-reaction data. Biochem Eng J. 2017;127:229–41.
Kohl TA, Tauch A. The GlxR regulon of the amino acid producer Corynebacterium glutamicum: Detection of the corynebacterial core regulon and integration into the transcriptional regulatory network model. J Biotechnol. 2009;143:239–46.
Kwon YM, Ricke SC, Mandal RK. Transposon sequencing: methods and expanding applications. Appl Microbiol Biotechnol. 2016;100:31–43.
Lee JY, Sung BH, Yu BJ, Lee JH, Lee SH, Kim MS, Koob MD, Kim SC. Phenotypic engineering by reprogramming gene transcription using novel artificial transcription factors in Escherichia coli. Nucleic Acids Res. 2008;36:e102.
Lennen RM, Pfleger BF. Modulating membrane composition alters free fatty acid tolerance in Escherichia coli. PLoS ONE. 2013;8(1):e54031.
Li C, Zhang R, Wang J, Wilson LM, Yan Y. Protein engineering for improving and diversifying natural product biosynthesis. Trends Biotechnol. 2020;38:729–44.
Li F, Yuan L, Lu H, Li G, Chen Y, Engqvist MKM, Kerkhoven EJ, Nielsen J. Deep learning-based kcat prediction enables improved enzyme-constrained model reconstruction. Nat Catal. 2022;5:662–72.
Li C, Gao X, Qi H, Zhang W, Li L, Wei C, Wei M, Sun X, Wang S, Wang L, Ji Y, Mao S, Zhu Z, Tanokura M, Lu F, Qin H-M. Substantial Improvement of an epimerase for the synthesis of D-Allulose by biosensor-based high-throughput microdroplet screening. Angew Chemie Int Ed. 2023;62:e202216721.
Lin Z, Zhang Y, Wang J. Engineering of transcriptional regulators enhances microbial stress tolerance. Biotechnol Adv. 2013;31:986–91.
Lin Z, Li J, Yan X, Yang J, Li X, Chen P, Yang X. Engineering of the small noncoding RNA (sRNA) DsrA together with the sRNA chaperone Hfq enhances the acid tolerance of Escherichia coli. Appl Environ Microbiol. 2021;87:1–15.
Ling C, Qiao GQ, Shuai BW, Song KN, Yao WX, Jiang XR, Chen GQ. Engineering self-flocculating Halomonas campaniensis for wastewaterless open and continuous fermentation. Biotechnol Bioeng. 2019;116:805–15.
Liu G, Chen Y, Færgeman NJ, Nielsen J. Elimination of the last reactions in ergosterol biosynthesis alters the resistance of Saccharomyces cerevisiae to multiple stresses. FEMS Yeast Res. 2017;17:fox063.
Liu R, Liang L, Choudhury A, Garst AD, Eckert CA, Oh EJ, Winkler J, Gill RT. Multiplex navigation of global regulatory networks (MINR) in yeast for improved ethanol tolerance and production. Metab Eng. 2019;51:50–8.
Liu G, Lin Q, Jin S, Gao C. The CRISPR-Cas toolbox and gene editing technologies. Mol Cell. 2022;82:333–47.
Lu H, Kerkhoven EJ, Nielsen J. Multiscale models quantifying yeast physiology: towards a whole-cell model. Trends Biotechnol. 2021;40:291–305.
Lu Q, Zhou XL, Liu JZ. Adaptive laboratory evolution and shuffling of Escherichia coli to enhance its tolerance and production of astaxanthin. Biotechnol Biofuels. 2022;15:17.
Ma Y, Yu H. Engineering of Rhodococcus cell catalysts for tolerance improvement by sigma factor mutation and active plasmid partition. J Ind Microbiol Biotechnol. 2012;39:1421–30.
Ma W, Liu Y, Lv X, Li J, Du G, Liu L. Combinatorial pathway enzyme engineering and host engineering overcomes pyruvate overflow and enhances overproduction of N-acetylglucosamine in Bacillus subtilis. Microb Cell Fact. 2019;18:1.
Mao ZT, Huang T, Yuan QQ, Ma HW. Construction and analysis of an integrated biological network of Escherichia coli. Syst Microbiol Biomanuf. 2022;2:165–76.
Meng Y, Li S, Zhang C, Zheng H. Strain-level profiling with picodroplet microfluidic cultivation reveals host-specific adaption of honeybee gut symbionts. Microbiome. 2022;10:140.
Mingardon F, Clement C, Hirano K, Nhan M, Luning EG, Chanal A, Mukhopadhyay A. Improving olefin tolerance and production in E. coli using native and evolved AcrB. Biotechnol Bioeng. 2015;112:879–88.
Mohedano MT, Konzock O, Chen Y. Strategies to increase tolerance and robustness of industrial microorganisms. Synth Syst Biotechnol. 2022;7:533–40.
Mukherjee V, Lind U, St. Onge RP, Blomberg A, Nygård Y. A CRISPR interference screen of essential genes reveals that proteasome regulation dictates acetic acid tolerance in Saccharomyces cerevisiae. mSystems. 2021;6:e00418-e422.
Nasution O, Lee YM, Kim E, Lee Y, Kim W, Choi W. Overexpression of OLE1 enhances stress tolerance and constitutively activates the MAPK HOG pathway in Saccharomyces cerevisiae. Biotechnol Bioeng. 2017;114:620–31.
Negi S, Imanishi M, Hamori M, Kawahara-Nakagawa Y, Nomura W, Kishi K, Shibata N, Sugiura Y. The past, present, and future of artificial zinc finger proteins: design strategies and chemical and biological applications. J Biol Inorg Chem. 2023;28:249–61.
Olsson L, Rugbjerg P, Torello Pianale L, Trivellin C. Robustness: linking strain design to viable bioprocesses. Trends Biotechnol. 2022;40:918–31.
Park YK, Ledesma-Amaro R. What makes Yarrowia lipolytica well suited for industry? Trends Biotechnol. 2023;41:242–54.
Pereira R, Mohamed ET, Radi MS, Herrgård MJ, Feist AM, Nielsen J, Chen Y. Elucidating aromatic acid tolerance at low pH in Saccharomyces cerevisiae using adaptive laboratory evolution. Proc Natl Acad Sci. 2020;117:27954–61.
Phaneuf PV, Gosting D, Palsson BO, Feist AM. ALEdb 1.0: a database of mutations from adaptive laboratory evolution experimentation. Nucleic Acids Res. 2019;47:1164–71.
Qin L, Dong S, Yu J, Ning X, Xu K, Zhang S-J, Xu L, Li B-Z, Li J, Yuan Y-J, Li C. Stress-driven dynamic regulation of multiple tolerance genes improves robustness and productive capacity of Saccharomyces cerevisiae in industrial lignocellulose fermentation. Metab Eng. 2020;61:160–70.
Qiu Z, Jiang R. Improving Saccharomyces cerevisiae ethanol production and tolerance via RNA polymerase II subunit Rpb7. Biotechnol Biofuels. 2017;10:125.
Rajaraman E, Agarwal A, Crigler J, Seipelt-Thiemann R, Altman E, Eiteman MA. Transcriptional analysis and adaptive evolution of Escherichia coli strains growing on acetate. Appl Microbiol Biotechnol. 2016;100:7777–85.
Sapoval N, Aghazadeh A, Nute MG, Antunes DA, Balaji A, Baraniuk R, Barberan CJ, Dannenfelser R, Dun C, Edrisi M, Elworth RAL, Kille B, Kyrillidis A, Nakhleh L, Wolfe CR, Yan Z, Yao V, Treangen TJ. Current progress and open challenges for applying deep learning across the biosciences. Nat Commun. 2022;13:1728.
Sherkhanov S, Korman TP, Bowie JU. Improving the tolerance of Escherichia coli to medium-chain fatty acid production. Metab Eng. 2014;25:1–7.
Sun L, Zheng P, Sun J, Wendisch VF, Wang Y. Genome-scale CRISPRi screening: a powerful tool in engineering microbiology. Eng Microbiol. 2023;3:100089.
Swinnen S, Henriques SF, Shrestha R, Ho P-W, Sa-Correia I, Nevoigt E. Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering: towards the underlying mechanisms. Microb Cell Fact. 2017;16:7.
Tan F, Wu B, Dai L, Qin H, Shui Z, Wang J, Zhu Q, Hu G, He M. Using global transcription machinery engineering (gTME) to improve ethanol tolerance of Zymomonas mobilis. Microb Cell Fact. 2016a;15:4.
Tan Z, Yoon JM, Nielsen DR, Shanks JV, Jarboe LR. Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables. Metab Eng. 2016b;35:105–13.
Tan Z, Khakbaz P, Chen Y, Lombardo J, Yoon JM, Shanks JV, Klauda JB, Jarboe LR. Engineering Escherichia coli membrane phospholipid head distribution improves tolerance and production of biorenewables. Metab Eng. 2017;44:1–12.
Thorwall S, Schwartz C, Chartron JW, Wheeldon I. Stress-tolerant non-conventional microbes enable next-generation chemical biosynthesis. Nat Chem Biol. 2020;16:113–21.
Wang X, He Q, Yang Y, Wang J, Haning K, Hu Y, Wu B, He M, Zhang Y, Bao J, Contreras LM, Yang S. Advances and prospects in metabolic engineering of Zymomonas mobilis. Metab Eng. 2018;50:57–73.
Wang J, Wang W, Wang H, Yuan F, Xu Z, Yang K, Li Z, Chen Y, Fan K. Improvement of stress tolerance and riboflavin production of Bacillus subtilis by introduction of heat shock proteins from thermophilic bacillus strains. Appl Microbiol Biotechnol. 2019;103:4455–65.
Xu K, Gao L, Hassan JU, Zhao Z, Li C, Huo Y-X, Liu G. Improving the thermo-tolerance of yeast base on the antioxidant defense system. Chem Eng Sci. 2018;175:335–42.
Xu Y, Zhao Z, Tong W, Ding Y, Liu B, Shi Y, Wang J, Sun S, Liu M, Wang Y, Qi Q, Xian M, Zhao G. An acid-tolerance response system protecting exponentially growing Escherichia coli. Nat Commun. 2020;11:1496.
Yamada Y, Urui M, Oki H, Inoue K, Matsui H, Ikeda Y, Nakagawa A, Sato F, Minami H, Shitan N. Transport engineering for improving the production and secretion of valuable alkaloids in Escherichia coli. Metab Eng Commun. 2021;13:e00184.
Yan WL, Cao ZB, Ding MZ, Yuan YJ. Design and construction of microbial cell factories based on systems biology. Synth Syst Biotechnol. 2023;8:176–85.
Yang L, Mih N, Anand A, Park JH, Tan J, Yurkovich JT, Monk JM, Lloyd CJ, Sandberg TE, Seo SW, Kim D, Sastry AV, Phaneuf P, Gao Y, Broddrick JT, Chen K, Heckmann D, Szubin R, Hefner Y, Feist AM, Palsson BO. Cellular responses to reactive oxygen species are predicted from molecular mechanisms. Proc Natl Acad Sci USA. 2019;116:14368–73.
Yang S, Chen R, Cao X, Wang G, Zhou YJ. De novo biosynthesis of the hops bioactive flavonoid xanthohumol in yeast. Nat Commun. 2024;15:253.
Yazawa H, Kamisaka Y, Kimura K, Yamaoka M, Uemura H. Efficient accumulation of oleic acid in Saccharomyces cerevisiae caused by expression of rat elongase 2 gene (rELO2) and its contribution to tolerance to alcohols. Appl Microbiol Biotechnol. 2011;91:1593–600.
Yin N, Zhu G, Luo Q, Liu J, Chen X, Liu L. Engineering of membrane phospholipid component enhances salt stress tolerance in Saccharomyces cerevisiae. Biotechnol Bioeng. 2020;117:710–20.
Yu H, Gerstein M. Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci. 2006;103:14724–31.
Yu H, Deng H, He J, Keasling JD, Luo X. UniKP: a unified framework for the prediction of enzyme kinetic parameters. Nat Commun. 2023;14:8211.
Zhan C, Li X, Lan G, Baidoo EEK, Yang Y, Liu Y, Sun Y, Wang S, Wang Y, Wang G, Nielsen J, Keasling JD, Chen Y, Bai Z. Reprogramming methanol utilization pathways to convert Saccharomyces cerevisiae to a synthetic methylotroph. Nat Catal. 2023;6:435–50.
Zhang C, Chen X, Stephanopoulos G, Too H-P. Efflux transporter engineering markedly improves amorphadiene production in Escherichia coli. Biotechnol Bioeng. 2016;113:1755–63.
Zhang HF, Chong HQ, Ching CB, Jiang RR. Random mutagenesis of global transcription factor cAMP receptor protein for improved osmotolerance. Biotechnol Bioeng. 2012;109(5):1165–72.
Zhang X, Cao Y, Liu Y, Lei Y, Zhai R, Chen W, Shi G, Jin J-M, Liang C, Tang S-Y. Designing glucose utilization “highway” for recombinant biosynthesis. Metab Eng. 2023;78:235–47.
Zheng HB, Wang X, Yomano LP, Geddes RD, Shanmugam KT, Ingram LO. Improving Escherichia coli FucO for furfural tolerance by saturation mutagenesis of individual amino acid positions. Appl Environ Microb. 2013;79(10):3202–8.
Zheng Y, Zha SJ, Zhang WF, Dong YH, He J, Lin ZH, Bao YB. Integrated RNA-seq and RNAi analysis of the roles of the Hsp70 and SP genes in Red-Shell Meretrix meretrix tolerance to the pathogen Vibrio parahaemolyticus. Mar Biotechnol. 2022;24:942–55.
Zhou J, Wang K, Xu S, Wu J, Liu P, Du G, Li J, Chen J. Identification of membrane proteins associated with phenylpropanoid tolerance and transport in Escherichia coli BL21. J Proteomics. 2015;113:15–28.
Zhou Z, Tang H, Wang W, Zhang L, Su F, Wu Y, Bai L, Li S, Sun Y, Tao F, Xu P. A cold shock protein promotes high-temperature microbial growth through binding to diverse RNA species. Cell Discov. 2021;2021(7):15.
Zhu C, Chen J, Wang Y, Wang L, Guo X, Chen N, Zheng P, Sun J, Ma Y. Enhancing 5-aminolevulinic acid tolerance and production by engineering the antioxidant defense system of Escherichia coli. Biotechnol Bioeng. 2019;116:2018–28.
Zhu GX, Yin NN, Luo QL, Liu J, Chen XL, Liu LM, Wu JR. Enhancement of sphingolipid synthesis improves osmotic tolerance of Saccharomyces cerevisiae. Appl Environ Microbiol. 2020a;86(8):e02911-e2919.
Zhu Y, Zhou C, Wang Y, Li C. Transporter engineering for microbial manufacturing. Biotechnol J. 2020b;15:1900494.