Strategies to Solve Lithium Battery Thermal Runaway: From Mechanism to Modification

Electrochemical Energy Reviews - Tập 4 Số 4 - Trang 633-679 - 2021
Lingchen Kong1, Yu Li1, Huitao Yu1
1School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Croce, F., Appetecchi, G.B., Persi, L., et al.: Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998). https://doi.org/10.1038/28818

Wang, H.S., Liu, Y.Y., Li, Y.Z., et al.: Lithium metal anode materials design: interphase and host. Electrochem. Energy Rev. 2, 509–517 (2019). https://doi.org/10.1007/s41918-019-00054-2

Zhao, W.J., Yi, J., He, P., et al.: Solid-state electrolytes for lithium-ion batteries: fundamentals, challenges and perspectives. Electrochem. Energy Rev. 2, 574–605 (2019). https://doi.org/10.1007/s41918-019-00048-0

Poizot, P., Laruelle, S., Grugeon, S., et al.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000). https://doi.org/10.1038/35035045

Gu, S., Sun, C.Z., Xu, D., et al.: Recent progress in liquid electrolyte-based Li-S batteries: shuttle problem and solutions. Electrochem. Energy Rev. 1, 599–624 (2018). https://doi.org/10.1007/s41918-018-0021-0

Li, Y.H., Li, Q.Y., Wang, H.Q., et al.: Recent progresses in oxygen reduction reaction electrocatalysts for electrochemical energy applications. Electrochem. Energy Rev. 2, 518–538 (2019). https://doi.org/10.1007/s41918-019-00052-4

Wu, D., Peng, C., Yin, C., et al.: Review of system integration and control of proton exchange membrane fuel cells. Electrochem. Energy Rev. 3, 466–505 (2020). https://doi.org/10.1007/s41918-020-00068-1

Zou, L., Qiao, Y., Li, C.M.: Boosting microbial electrocatalytic kinetics for high power density: insights into synthetic biology and advanced nanoscience. Electrochem. Energy Rev. 1, 567–598 (2018). https://doi.org/10.1007/s41918-018-0020-1

Mori, R.: Recent developments for aluminum-air batteries. Electrochem. Energy Rev. 3, 344–369 (2020). https://doi.org/10.1007/s41918-020-00065-4

Lokhande, P.E., Chavan, U.S., Pandey, A.: Materials and fabrication methods for electrochemical supercapacitors: overview. Electrochem. Energy Rev. 3, 155–186 (2020). https://doi.org/10.1007/s41918-019-00057-z

Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4302 (2004). https://doi.org/10.1021/cr020731c

Maleki, H., Howard, J.N.: Effects of overdischarge on performance and thermal stability of a Li-ion cell. J. Power Sources 160, 1395–1402 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.043

Noh, H.J., Youn, S., Yoon, C.S., et al.: Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources 233, 121–130 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.063

Feng, X.N., Fang, M., He, X.M., et al.: Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J. Power Sources 255, 294–301 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.005

Mao, N., Wang, Z.R., Chung, Y.H., et al.: Overcharge cycling effect on the thermal behavior, structure, and material of lithium-ion batteries. Appl. Therm. Eng. 163, 114147 (2019). https://doi.org/10.1016/j.applthermaleng.2019.114147

Ali, Y., Iqbal, N., Lee, S.: Role of SEI layer growth in fracture probability in lithium-ion battery electrodes. Int. J. Energy Res. 45, 5293–5308 (2021). https://doi.org/10.1002/er.6150

Ouyang, D.X., Chen, M.Y., Liu, J.H., et al.: Investigation of a commercial lithium-ion battery under overcharge/over-discharge failure conditions. RSC Adv. 8, 33414–33424 (2018). https://doi.org/10.1039/c8ra05564e

Liu, X., Wu, Z.B., Stoliarov, S.I., et al.: Heat release during thermally-induced failure of a lithium ion battery: impact of cathode composition. Fire Saf. J. 85, 10–22 (2016). https://doi.org/10.1016/j.firesaf.2016.08.001

Li, Z., Huang, J., Yann Liaw, B., et al.: A review of lithium deposition in lithium-ion and lithium metal secondary batteries. J. Power Sources 254, 168–182 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.099

Li, Y.L., Feng, X.N., Ren, D.S., et al.: Thermal runaway triggered by plated lithium on the anode after fast charging. ACS Appl. Mater. Interfaces 11, 46839–46850 (2019). https://doi.org/10.1021/acsami.9b16589

Belov, D., Yang, M.H.: Failure mechanism of Li-ion battery at overcharge conditions. J. Solid State Electrochem. 12, 885–894 (2008). https://doi.org/10.1007/s10008-007-0449-3

Events with smoke, fire, extreme heat or explosion involving lithium batteries. Federal Aviation Administration Publishing. (2021). https://www.faa.gov/hazmat/resources/lithium_batteries/media/Battery_incident_chart.pdf. Accessed 31 May 2021

Yang, G., Song, Y.D., Wang, Q., et al.: Review of ionic liquids containing, polymer/inorganic hybrid electrolytes for lithium metal batteries. Mater. Des. 190, 108563 (2020). https://doi.org/10.1016/j.matdes.2020.108563

Jiang, F.W., Liu, K., Wang, Z.R., et al.: Theoretical analysis of lithium-ion battery failure characteristics under different states of charge. Fire Mater. 42, 680–686 (2018). https://doi.org/10.1002/fam.2522

Liu, N., Lu, Z.D., Zhao, J., et al.: A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187–192 (2014). https://doi.org/10.1038/nnano.2014.6

Shen, X.W., Li, Y.T., Qian, T., et al.: Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Nat. Commun. 10, 1–9 (2019). https://doi.org/10.1038/s41467-019-08767-0

Cheng, X.B., Zhao, C.Z., Yao, Y.X., et al.: Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem 5, 74–96 (2019). https://doi.org/10.1016/j.chempr.2018.12.002

Aurbach, D.: A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 148, 405–416 (2002). https://doi.org/10.1016/s0167-2738(02)00080-2

Wang, Q.S., Mao, B.B., Stoliarov, S.I., et al.: A review of lithium-ion battery failure mechanisms and fire prevention strategies. Prog. Energy Combust. Sci. 73, 95–131 (2019). https://doi.org/10.1016/j.pecs.2019.03.002

Liu, X., Ren, D.S., Hsu, H., et al.: Thermal runaway of lithium-ion batteries without internal short circuit. Joule 2, 2047–2064 (2018). https://doi.org/10.1016/j.joule.2018.06.015

Woo, J.J., Zhang, Z.C., Amine, K.: Separator/electrode assembly based on thermally stable polymer for safe lithium-ion batteries. Adv. Energy Mater. 4, 1301208 (2014). https://doi.org/10.1002/aenm.201301208

Liang, J., Chen, Q.Y., Liao, X.B., et al.: A nano-shield design for separators to resist dendrite formation in lithium-metal batteries. Angew. Chem. Int. Ed. 59, 6561–6566 (2020). https://doi.org/10.1002/anie.201915440

Chombo, P.V., Laoonual, Y.: A review of safety strategies of a Li-ion battery. J. Power Sources 478, 228649 (2020). https://doi.org/10.1016/j.jpowsour.2020.228649

Chen, W., Lei, T., Wu, C.Y., et al.: Designing safe electrolyte systems for a high-stability lithium-sulfur battery. Adv. Energy Mater. 8, 1702348 (2018). https://doi.org/10.1002/aenm.201702348

Wen, L.Y., Zhou, M., Wang, C.L., et al.: Energy storage: nanoengineering energy conversion and storage devices via atomic layer deposition (adv. energy mater. 23/2016). Adv. Energy Mater. 6, 201670132 (2016). https://doi.org/10.1002/aenm.201670132

Lei, Y.K., Ni, J., Hu, Z.J., et al.: Surface modification of Li-rich Mn-based layered oxide cathodes: challenges, materials, methods, and characterization. Adv. Energy Mater. 10, 2002506 (2020). https://doi.org/10.1002/aenm.202002506

The CNN Wire Staff.: Jet breaks apart during landing in Colombia. CNN Publishing. https://en.wikipedia.org/wiki/AIRES_Flight_8250. Accessed 17 Aug 2010

UPS cargo plane crashes in Dubai, killing two. BBC Publishing. https://www.bbc.co.uk/news/world-middle-east-11183476. Accessed 3 Sept 2010

In-flight uncontained engine failure Airbus A380-842, VH-OQA, overhead Batam Island, Indonesia, 4 November 2010. ATSB Publishing. https://www.atsb.gov.au/publications/investigation_reports/2010/AAIR/AO-2010-089.aspx. Accessed 27 June 2013

Fresh faults with Boeing dreamliner planes (2013). BBC Publishing. https://www.bbc.com/news/business-20950287. Accessed 9 January 2013

Cooper, A.: Fire aboard empty 787 Dreamliner prompts investigation. CNN Publishing. https://edition.cnn.com/2013/01/07/travel/dreamliner-fire/index.html. Accessed 27 June 2013

British Broadcasting Corporation: ‘Fixed Samsung Galaxy Note 7’ catches fire on plane. BBC Publishing. https://www.bbc.com/news/technology-37570100. Accessed 5 Oct 2016

Firefighters respond to another Apple Store due to iPhone battery explosion. 9to5Mac Publishing. https://9to5mac.com/2018/01/10/firefighters-iphone-explosion. Accessed 10 Jan 2018

The truth of the Huawei phone explosion has surfaced. Netizen: silently love Huawei for a minute. Zhihu Publishing. https://zhuanlan.zhihu.com/p/61994348. Accessed 10 Apr 2019

Scared! The laptop burst into flames while charging. Sohu Publishing. https://www.sohu.com/a/288000639_356100. Accessed 10 Jan 2019

Tesla Model S catches fire in Norway. Thedrive Publishing. https://www.thedrive.com/new-cars/1492/tesla-model-s-catches-fire-in-norway. Accessed 1 Jan 2016

Tesla says car fire started in battery. Pingwest Publishing. https://wheels.blogs.nytimes.com/2013/10/02/highway-fire-of-tesla-model-s-included-its-lithium-battery/. Accessed 2 Oct 2013

Cheng, X.B., Zhang, R., Zhao, C.Z., et al.: Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115

Jeppson, D.W., Ballif, J.L., Yuan, W.W., et al.: Lithium literature review: lithium’s properties and interactions. Plasma Phys. Control. Fusion 1, 6885395 (1978). https://doi.org/10.2172/6885395

Wood, K.N., Kazyak, E., Chadwick, A.F., et al.: Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci. 2, 790–801 (2016). https://doi.org/10.1021/acscentsci.6b00260

Balakrishnan, P.G., Ramesh, R., Prem Kumar, T.: Safety mechanisms in lithium-ion batteries. J. Power Sources 155, 401–414 (2006). https://doi.org/10.1016/j.jpowsour.2005.12.002

Eddahech A.: Modélisation du vieillissement et détermination de l’état de santé de batteries lithium-ion pour application véhicule électrique et hybride. Université Sciences et Technologies-Bordeaux I. (2014)

Fergus, J.W.: Recent developments in cathode materials for lithium-ion batteries. J. Power Sources 195, 939–954 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.089

Ouyang, D.X., Chen, M.Y., Huang, Q., et al.: A review on the thermal hazards of the lithium-ion battery and the corresponding countermeasures. Appl. Sci. 9, 2483 (2019). https://doi.org/10.3390/app9122483

Peng, C., Li, Y., Yao, F.N., et al.: Ultrahigh-energy-density fluorinated calcinated macadamia nut shell cathodes for lithium/fluorinated carbon batteries. Carbon 153, 783–791 (2019). https://doi.org/10.1016/j.carbon.2019.07.065

Krause, F.C., Jones, J.P., Jones, S.C., et al.: High specific energy lithium primary batteries as power sources for deep space exploration. J. Electrochem. Soc. 165, A2312–A2320 (2018). https://doi.org/10.1149/2.1061810jes

Sun, C., Feng, Y., Li, Y., et al.: Solvothermally exfoliated fluorographene for high-performance lithium primary batteries. Nanoscale 6, 2634–2641 (2014). https://doi.org/10.1039/c3nr04609e

Zhang, S.S., Foster, D., Wolfenstine, J., et al.: Electrochemical characteristic and discharge mechanism of a primary Li/CFx cell. J. Power Sources 187, 233–237 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.076

Zhang, H., Eshetu, G.G., Judez, X., et al.: Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angew. Chem. Int. Ed. 57, 15002–15027 (2018). https://doi.org/10.1002/anie.201712702

Guo, Y.P., Li, H.Q., Zhai, T.Y.: Reviving lithium-metal anodes for next-generation high-energy batteries. Adv. Mater. 29, 1700007 (2017). https://doi.org/10.1002/adma.201700007

Ghazi, Z.A., Sun, Z.H., Sun, C.G., et al.: Key aspects of lithium metal anodes for lithium metal batteries. Small 15, 1900687 (2019). https://doi.org/10.1002/smll.201900687

Liu, J., Yuan, H., Cheng, X.B., et al.: A review of naturally derived nanostructured materials for safe lithium metal batteries. Mater. Today Nano 8, 100049 (2019). https://doi.org/10.1016/j.mtnano.2019.100049

Rahman, M.A., Wang, X.J., Wen, C.E.: A review of high energy density lithium-air battery technology. J. Appl. Electrochem. 44, 5–22 (2014). https://doi.org/10.1007/s10800-013-0620-8

Zhou, R.X., Li, Y., Feng, Y.Y., et al.: The electrochemical performances of fluorinated hard carbon as the cathode of lithium primary batteries. Compos. Commun. 21, 100396 (2020). https://doi.org/10.1016/j.coco.2020.100396

Watanabe, N., Nakajima, T., Hagiwara, R.: Discharge reaction and overpotential of the graphite fluoride cathode in a nonaqueous lithium cell. J. Power Sources 20, 87–92 (1987). https://doi.org/10.1016/0378-7753(87)80095-2

Fulvio, P.F., Veith, G.M., Adcock, J.L., et al.: Fluorination of “brick and mortar” soft-templated graphitic ordered mesoporous carbons for high power lithium-ion battery. J. Mater. Chem. A 1, 9414 (2013). https://doi.org/10.1039/c3ta10710h

Li, Y.Y., Wu, X.Z., Liu, C., et al.: Fluorinated multi-walled carbon nanotubes as cathode materials of lithium and sodium primary batteries: effect of graphitization of carbon nanotubes. J. Mater. Chem. A 7, 7128–7137 (2019). https://doi.org/10.1039/c8ta12074a

Li, X.T., Zhang, H.C., Liu, C., et al.: A MOF-derived multifunctional nano-porous fluorinated carbon for high performance lithium/fluorinated carbon primary batteries. Microporous Mesoporous Mat. 310, 110650 (2021). https://doi.org/10.1016/j.micromeso.2020.110650

Wang, L., Li, Y.Y., Wang, S., et al.: Fluorinated nanographite as a cathode material for lithium primary batteries. ChemElectroChem 6, 2201–2207 (2019). https://doi.org/10.1002/celc.201900194

Peng, C., Kong, L.C., Li, Y., et al.: Fluorinated graphene nanoribbons from unzipped single-walled carbon nanotubes for ultrahigh energy density lithium-fluorinated carbon batteries. Sci. China-Mater. 64, 1367–1377 (2021). https://doi.org/10.1007/s40843-020-1551-x

Duan, J., Tang, X., Dai, H.F., et al.: Building safe lithium-ion batteries for electric vehicles: a review. Electrochem. Energy Rev. 3, 1–42 (2020). https://doi.org/10.1007/s41918-019-00060-4

Lu, Y., Zhang, Q., Chen, J.: Recent progress on lithium-ion batteries with high electrochemical performance. Sci. China-Chem. 62, 533–548 (2019). https://doi.org/10.1007/s11426-018-9410-0

Ianniciello, L., Biwolé, P.H., Achard, P.: Electric vehicles batteries thermal management systems employing phase change materials. J. Power Sources 378, 383–403 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.071

Zhang, T.S., Gao, C., Gao, Q., et al.: Status and development of electric vehicle integrated thermal management from BTM to HVAC. Appl. Therm. Eng. 88, 398–409 (2015). https://doi.org/10.1016/j.applthermaleng.2015.02.001

Lisbona, D., Snee, T.: A review of hazards associated with primary lithium and lithium-ion batteries. Process Saf. Environ. Protect. 89, 434–442 (2011). https://doi.org/10.1016/j.psep.2011.06.022

Viswanathan, V.V., Choi, D., Wang, D.H., et al.: Effect of entropy change of lithium intercalation in cathodes and anodes on Li-ion battery thermal management. J. Power Sources 195, 3720–3729 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.103

Hémery, C.V.: Etudes des phénomènes thermiques dans les batteries Li-ion. Université de Grenoble, Autre (2013)

Wang, Q.S., Ping, P., Zhao, X.J., et al.: Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 208, 210–224 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.038

Abraham, D.P., Roth, E.P., Kostecki, R., et al.: Diagnostic examination of thermally abused high-power lithium-ion cells. J. Power Sources 161, 648–657 (2006). https://doi.org/10.1016/j.jpowsour.2006.04.088

Selman, J.R., Al Hallaj, S., Uchida, I., et al.: Cooperative research on safety fundamentals of lithium batteries. J. Power Sources 97, 726–732 (2001). https://doi.org/10.1016/S0378-7753(01)00732-7

Sahraei, E., Meier, J., Wierzbicki, T.: Characterizing and modeling mechanical properties and onset of short circuit for three types of lithium-ion pouch cells. J. Power Sources 247, 503–516 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.056

Zhang, C., Santhanagopalan, S., Sprague, M.A., et al.: Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse. J. Power Sources 290, 102–113 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.162

Saito, Y., Takano, K., Negishi, A.: Thermal behaviors of lithium-ion cells during overcharge. J. Power Sources 97, 693–696 (2001). https://doi.org/10.1016/S0378-7753(01)00703-0

Li, H.F., Gao, J.K., Zhang, S.L.: Effect of overdischarge on swelling and recharge performance of lithium ion cells. Chin. J. Chem. 26, 1585–1588 (2008). https://doi.org/10.1002/cjoc.200890286

Zheng, S.Q., Wang, L., Feng, X.N., et al.: Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries. J. Power Sources 378, 527–536 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.050

Kitoh, K., Nemoto, H.: 100 Wh Large size Li-ion batteries and safety tests. J. Power Sources 81, 887–890 (1999). https://doi.org/10.1016/S0378-7753(99)00125-1

Smith, K., Kim, G.H., Darcy, E., et al.: Thermal/electrical modeling for abuse-tolerant design of lithium ion modules. Int. J. Energy Res. 34, 204–215 (2010). https://doi.org/10.1002/er.1666

Mohanty, D., Hockaday, E., Li, J., et al.: Effect of electrode manufacturing defects on electrochemical performance of lithium-ion batteries: cognizance of the battery failure sources. J. Power Sources 312, 70–79 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.007

Bandhauer, T.M., Garimella, S., Fuller, T.F.: A critical review of thermal issues in lithium-ion batteries. J. Electrochem. Soc. 158, R1 (2011). https://doi.org/10.1149/1.3515880

An, Z.J., Jia, L., Ding, Y., et al.: A review on lithium-ion power battery thermal management technologies and thermal safety. Int. J. Therm. Sci. 26, 391–412 (2017). https://doi.org/10.1007/s11630-017-0955-2

Jaguemont, J., Boulon, L., Dube, Y., et al.: Low temperature discharge cycle tests for a lithium ion cell. In: 2014 IEEE Vehicle Power and Propulsion Conference (VPPC). Coimbra, Portugal. IEEE, 1–6 (2014). https://doi.org/10.1109/VPPC.2014.7007097

Barkholtz, H.M., Preger, Y., Ivanov, S., et al.: Multi-scale thermal stability study of commercial lithium-ion batteries as a function of cathode chemistry and state-of-charge. J. Power Sources 435, 226777 (2019). https://doi.org/10.1016/j.jpowsour.2019.226777

Bugryniec, P.J., Davidson, J.N., Cumming, D.J., et al.: Pursuing safer batteries: thermal abuse of LiFePO4 cells. J. Power Sources 414, 557–568 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.013

Koch, S., Fill, A., Birke, K.P.: Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway. J. Power Sources 398, 106–112 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.051

Yang, Y., Chen, L., Yang, L.J., et al.: Capacity fade characteristics of lithium iron phosphate cell during dynamic cycle. Energy 206, 118155 (2020). https://doi.org/10.1016/j.energy.2020.118155

Honkura, K., Horiba, T.: Study of the deterioration mechanism of LiCoO2/graphite cells in charge/discharge cycles using the discharge curve analysis. J. Power Sources 264, 140–146 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.036

Lin, X.K., Park, J., Liu, L., et al.: A comprehensive capacity fade model and analysis for Li-ion batteries. J. Electrochem. Soc. 160, A1701–A1710 (2013). https://doi.org/10.1149/2.040310jes

Wu, S.H., Lee, P.H.: Storage fading of a commercial 18650 cell comprised with NMC/LMO cathode and graphite anode. J. Power Sources 349, 27–36 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.002

Watanabe, S., Kinoshita, M., Nakura, K.: Capacity fade of LiNi(1–x−y)CoxAlyO2 cathode for lithium-ion batteries during accelerated calendar and cycle life test. I. Comparison analysis between LiNi(1–x−y)CoxAlyO2 and LiCoO2 cathodes in cylindrical lithium-ion cells during long term storage test. J. Power Sources 247, 412–422 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.079

Hoque, M.M., Hannan, M.A., Mohamed, A.: Voltage equalization control algorithm for monitoring and balancing of series connected lithium-ion battery. J. Renew. Sustain. Energy 8, 025703 (2016). https://doi.org/10.1063/1.4944961

Fan, J., Tan, S.: Studies on charging lithium-ion cells at low temperatures. J. Electrochem. Soc. 153, A1081 (2006). https://doi.org/10.1149/1.2190029

Zhang, S.S., Xu, K., Jow, T.R.: Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochim. Acta 49, 1057–1061 (2004). https://doi.org/10.1016/j.electacta.2003.10.016

Placke, T., Kloepsch, R., Dühnen, S., et al.: Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J. Solid State Electrochem. 21, 1939–1964 (2017). https://doi.org/10.1007/s10008-017-3610-7

Besenhard, J.O., Winter, M., Yang, J., et al.: Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. J. Power Sources 54, 228–231 (1995). https://doi.org/10.1016/0378-7753(94)02073-C

Peled, E.: The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems: the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979). https://doi.org/10.1149/1.2128859

Zhang, Y., Liu, B.Y., Hitz, E., et al.: A carbon-based 3D current collector with surface protection for Li metal anode. Nano Res. 10, 1356–1365 (2017). https://doi.org/10.1007/s12274-017-1461-2

Yang, C.P., Zhang, L., Liu, B.Y., et al.: Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. Proc. Natl. Acad. Sci. USA 115, 3770–3775 (2018). https://doi.org/10.1073/Proc.Natl.Acad.Sci.U.S.A.1719758115

Fan, L., Li, S., Liu, L., et al.: Enabling stable lithium metal anode via 3D inorganic skeleton with superlithiophilic interphase. Adv. Enengy Mater. (2018). https://doi.org/10.1002/aenm.201802350

Ramirez, J.R., Yang, H.Y., Kane, C.M., et al.: Reproducible synthesis and high porosity of mer-Zn(Im)2 (ZIF-10): exploitation of an apparent double-eight ring template. J. Am. Chem. Soc. 138, 12017–12020 (2016). https://doi.org/10.1021/jacs.6b06375

Xiang, L., Sheng, L.Q., Wang, C.Q., et al.: Amino-functionalized ZIF-7 nanocrystals: improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO2 /CH4 separation. Adv. Mater. 29, 1606999 (2017). https://doi.org/10.1002/adma.201606999

Li, Y., Fan, J., Zhang, J., et al.: A honeycomb-like Co@N-C composite for ultrahigh sulfur loading Li-S batteries. ACS Nano 11, 11417–11424 (2017). https://doi.org/10.1021/acsnano.7b06061

Zhu, M.Q., Li, B., Li, S.M., et al.: Dendrite-free metallic lithium in lithiophilic carbonized metal-organic frameworks. Adv. Energy Mater. 8, 1703505 (2018). https://doi.org/10.1002/aenm.201703505

Li, K., Hu, Z.Y., Ma, J.Z., et al.: A 3D and stable lithium anode for high-performance lithium-iodine batteries. Adv. Mater. 31, 1902399 (2019). https://doi.org/10.1002/adma.201902399

Li, S.Y., Liu, Q.L., Zhou, J.J., et al.: Hierarchical Co3O4 nanofiber-carbon sheet skeleton with superior Na/Li-philic property enabling highly stable alkali metal batteries. Adv. Funct. Mater. 29, 1808847 (2019). https://doi.org/10.1002/adfm.201808847

Hu, Y.H., Sun, X.L.: Flexible rechargeable lithium ion batteries: Advances and challenges in materials and process technologies. J. Mater. Chem. A 2, 10712–10738 (2014). https://doi.org/10.1039/c4ta00716f

Peng, H.J., Huang, J.Q., Zhang, Q.: A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries. Chem. Soc. Rev. 46, 5237–5288 (2017). https://doi.org/10.1039/c7cs00139h

Wang, A., Tang, S., Kong, D., et al.: Bending-tolerant anodes for lithium-metal batteries. Adv. Mater. (2018). https://doi.org/10.1002/adma.201703891

Huang, C., Xiao, J., Shao, Y.Y., et al.: Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures. Nat. Commun. 5, 1–8 (2014). https://doi.org/10.1038/ncomms4015

Lu, L.L., Ge, J., Yang, J.N., et al.: Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 16, 4431–4437 (2016). https://doi.org/10.1021/acs.nanolett.6b01581

Yun, Q.B., He, Y.B., Lv, W., et al.: Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 28, 6932–6939 (2016). https://doi.org/10.1002/adma.201601409

Yang, C.P., Yin, Y.X., Zhang, S.F., et al.: Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 1–9 (2015). https://doi.org/10.1038/ncomms9058

Jin, S., Xin, S., Wang, L.J., et al.: Carbon nanostructures: covalently connected carbon nanostructures for current collectors in both the cathode and anode of Li-S batteries. Adv. Mater. 28, 9016 (2016). https://doi.org/10.1002/adma.201670287

Zhang, Y., Luo, W., Wang, C.W., et al.: High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proc. Natl. Acad. Sci. USA 114, 3584–3589 (2017). https://doi.org/10.1073/pnas.1618871114

Deng, W., Liang, S.S., Zhou, X.F., et al.: Depressing the irreversible reactions on a three-dimensional interface towards a high-areal capacity lithium metal anode. J. Mater. Chem. A 7, 6267–6274 (2019). https://doi.org/10.1039/c9ta00143c

Lu, D.P., Shao, Y.Y., Lozano, T., et al.: Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater. 5, 1400993 (2015). https://doi.org/10.1002/aenm.201400993

Li, Y.Z., Li, Y.B., Sun, Y.M., et al.: Revealing nanoscale passivation and corrosion mechanisms of reactive battery materials in gas environments. Nano Lett. 17, 5171–5178 (2017). https://doi.org/10.1021/acs.nanolett.7b02630

Zhu, M.Q., Li, S.M., Li, B., et al.: Homogeneous guiding deposition of sodium through main group II metals toward dendrite-free sodium anodes. Sci. Adv. 5, eaau6264 (2019). https://doi.org/10.1126/sciadv.aau6264

Zhai, P.B., Wang, T.S., Yang, W.W., et al.: Uniform lithium deposition assisted by single-atom doping toward high-performance lithium metal anodes. Adv. Energy Mater. 9, 1804019 (2019). https://doi.org/10.1002/aenm.201804019

Shang, C.Q., Dong, S.M., Wang, S., et al.: Coaxial Ni(x)Co(2x)(OH)(6x)/TiN nanotube arrays as supercapacitor electrodes. ACS Nano 7, 5430–5436 (2013). https://doi.org/10.1021/nn401402a

Ren, F.H., Lu, Z.Y., Zhang, H., et al.: Pseudocapacitance induced uniform plating/stripping of Li metal anode in vertical graphene nanowalls. Adv. Funct. Mater. 28, 1805638 (2018). https://doi.org/10.1002/adfm.201805638

Lin, K., Qin, X.Y., Liu, M., et al.: Ultrafine titanium nitride sheath decorated carbon nanofiber network enabling stable lithium metal anodes. Adv. Funct. Mater. 29, 1903229 (2019). https://doi.org/10.1002/adfm.201903229

Chen, X.R., Zhao, B.C., Yan, C., et al.: Review on Li deposition in working batteries: from nucleation to early growth. Adv. Mater. 33, 2004128 (2021). https://doi.org/10.1002/adma.202004128

Luo, L., Li, J.Y., Yaghoobnejad Asl, H., et al.: A 3D lithiophilic Mo2 N-modified carbon nanofiber architecture for dendrite-free lithium-metal anodes in a full cell. Adv. Mater. 31, 1904537 (2019). https://doi.org/10.1002/adma.201904537

Le, T., Liang, Q.H., Chen, M., et al.: A triple-gradient host for long cycling lithium metal anodes at ultrahigh current density. Small 16, 2001992 (2020). https://doi.org/10.1002/smll.202001992

Naguib, M., Kurtoglu, M., Presser, V., et al.: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306

Naguib, M., Come, J., Dyatkin, B., et al.: MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 16, 61–64 (2012). https://doi.org/10.1016/j.elecom.2012.01.002

Naguib, M., Mashtalir, O., Carle, J., et al.: Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012). https://doi.org/10.1021/nn204153h

Zhang, D., Wang, S., Li, B., et al.: Horizontal growth of lithium on parallelly aligned MXene layers towards dendrite-free metallic lithium anodes. Adv. Mater. 31, 1901820 (2019). https://doi.org/10.1002/adma.201901820

Chen, X., Shang, M.W., Niu, J.J.: Inter-layer-calated thin Li metal electrode with improved battery capacity retention and dendrite suppression. Nano Lett. 20, 2639–2646 (2020). https://doi.org/10.1021/acs.nanolett.0c00201

Gao, X.J., Yang, X.F., Adair, K., et al.: 3D vertically aligned Li metal anodes with ultrahigh cycling currents and capacities of 10 mA cm–2/20 mAh cm–2 realized by selective nucleation within microchannel walls. Adv. Energy Mater. 10, 1903753 (2020). https://doi.org/10.1002/aenm.201903753

An, Y.L., Fei, H.F., Zeng, G.F., et al.: Vacuum distillation derived 3D porous current collector for stable lithium-metal batteries. Nano Energy 47, 503–511 (2018). https://doi.org/10.1016/j.nanoen.2018.03.036

Liu, L., Yin, Y.X., Li, J.Y., et al.: Ladderlike carbon nanoarrays on 3D conducting skeletons enable uniform lithium nucleation for stable lithium metal anodes. Chem. Commun. 54, 5330–5333 (2018). https://doi.org/10.1039/c8cc02672f

Wang, S.H., Yin, Y.X., Zuo, T.T., et al.: Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Adv. Mater. 29, 1703729 (2017). https://doi.org/10.1002/adma.201703729

Jiang, Z.P., Jin, L., Han, Z.L., et al.: Facile generation of polymer–alloy hybrid layers for dendrite-free lithium-metal anodes with improved moisture stability. Angew. Chem. Int. Ed. 58, 11374–11378 (2019). https://doi.org/10.1002/anie.201905712

Hong, X.D., Mei, J., Wen, L., et al.: Nonlithium metal-sulfur batteries: Steps toward a leap. Adv. Mater. 31, 1802822 (2019). https://doi.org/10.1002/adma.201802822

Yuan, Y., Wu, F., Bai, Y., et al.: Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode. Energy Storage Mater. 16, 411–418 (2019). https://doi.org/10.1016/j.ensm.2018.06.022

Yan, C., Cheng, X.B., Yao, Y.X., et al.: An armored mixed conductor interphase on a dendrite-free lithium-metal anode. Adv. Mater. 30, 1804461 (2018). https://doi.org/10.1002/adma.201804461

Yan, C., Cheng, X.B., Tian, Y., et al.: Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition. Adv. Mater. 30, e1707629 (2018). https://doi.org/10.1002/adma.201707629

Lu, Y., Tu, Z., Shu, J., et al.: Stable lithium electrodeposition in salt-reinforced electrolytes. J. Power Sources 279, 413–418 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.030

Zhang, S.S.: A new finding on the role of LiNO3 in lithium-sulfur battery. J. Power Sources 322, 99–105 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.009

Wu, F., Qian, J., Chen, R., et al.: An effective approach to protect lithium anode and improve cycle performance for Li-S batteries. ACS Appl. Mater. Interfaces 6, 15542–15549 (2014). https://doi.org/10.1021/am504345s

Matsuda, Y., Sekiya, M.: Effect of organic additives in electrolyte solutions on lithium electrode behavior. J. Power Sources 81(82), 759–761 (1999). https://doi.org/10.1016/S0378-7753(99)00239-6

Choi, J.W., Cheruvally, G., Kim, D.S., et al.: Rechargeable lithium/sulfur battery with liquid electrolytes containing toluene as additive. J. Power Sources 183, 441–445 (2008). https://doi.org/10.1016/j.jpowsour.2008.05.038

Yang, W., Yang, W., Song, A., et al.: Pyrrole as a promising electrolyte additive to trap polysulfides for lithium-sulfur batteries. J. Power Sources 348, 175–182 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.008

Baginska, M., Blaiszik, B.J., Merriman, R.J., et al.: Autonomic shutdown of lithium-ion batteries using thermoresponsive microspheres. Adv. Energy Mater. 2, 583–590 (2012). https://doi.org/10.1002/aenm.201100683

Yuge, R., Tamura, N., Manako, T., et al.: High-rate charge/discharge properties of Li-ion battery using carbon-coated composites of graphites, vapor grown carbon fibers, and carbon nanohorns. J. Power Sources 266, 471–474 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.068

Kim, K.J., Lee, T.S., Kim, H.G., et al.: A hard carbon/microcrystalline graphite/carbon composite with a core-shell structure as novel anode materials for lithium-ion batteries. Electrochim. Acta 135, 27–34 (2014). https://doi.org/10.1016/j.electacta.2014.04.171

Jung, Y.S., Cavanagh, A.S., Riley, L.A., et al.: Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries. Adv. Mater. 22, 2172–2176 (2010). https://doi.org/10.1002/adma.200903951

Fang, D., Li, L.C., Xu, W.L., et al.: High capacity lithium ion battery anodes using Sn nanowires encapsulated Al2O3 tubes in carbon matrix. Adv. Mater. Interfaces 3, 1500491 (2016). https://doi.org/10.1002/admi.201500491

Feng, T., Xu, Y., Zhang, Z., et al.: Low-cost Al2O3 coating layer as a preformed SEI on natural graphite powder to improve Coulombic efficiency and high-rate cycling stability of lithium-ion batteries. ACS Appl. Mater. Interfaces 8, 6512–6519 (2016). https://doi.org/10.1021/acsami.6b00231

Xu, T., Zhou, C., Zhou, H., et al.: Synthesis of alumina-coated natural graphite for highly cycling stability and safety of Li-ion batteries. Chin. J. Chem. 37, 342–346 (2019). https://doi.org/10.1002/cjoc.201800559

Bublil, S., Sharabani, T., Turgeman, M., et al.: Improving amorphous carbon anodes for Na ion batteries by surface treatment of a presodiated electrode with Al2O3. Langmuir 35, 11670–11678 (2019). https://doi.org/10.1021/acs.langmuir.9b02141

Hu, T., Xie, M., Zhong, J., et al.: Porous Fe2O3 nanorods anchored on nitrogen-doped graphenes and ultrathin Al2O3 coating by atomic layer deposition for long-lived lithium ion battery anode. Carbon 76, 141–147 (2014). https://doi.org/10.1016/j.carbon.2014.04.060

Cheng, Y.W., Pandey, R.K., Li, Y.C., et al.: Conducting nitrogen-incorporated ultrananocrystalline diamond coating for highly structural stable anode materials in lithium ion battery. Nano Energy 74, 104811 (2020). https://doi.org/10.1016/j.nanoen.2020.104811

Ding, F., Xu, W., Choi, D., et al.: Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries. J. Mater. Chem. (2012). https://doi.org/10.1039/c2jm31015e

Wu, Q.H., Qu, B., Tang, J., et al.: An alumina-coated Fe3O4-reduced graphene oxide composite electrode as a stable anode for lithium-ion battery. Electrochim. Acta 156, 147–153 (2015). https://doi.org/10.1016/j.electacta.2014.12.149

Moradi, B., Wang, D., Botte, G.G.: Carbon-coated Fe3O4 nanospindles as solid electrolyte interface for improving graphite anodes in lithium ion batteries. J. Appl. Electrochem. 50, 321–331 (2020). https://doi.org/10.1007/s10800-019-01393-0

Lotfabad, E.M., Kalisvaart, P., Cui, K., et al.: ALD TiO2 coated silicon nanowires for lithium ion battery anodes with enhanced cycling stability and Coulombic efficiency. Phys. Chem. Chem. Phys. 15, 13646–13657 (2013). https://doi.org/10.1039/c3cp52485j

Li, Y., Sun, Y.J., Xu, G.J., et al.: Tuning electrochemical performance of Si-based anodes for lithium-ion batteries by employing atomic layer deposition alumina coating. J. Mater. Chem. A 2, 11417–11425 (2014). https://doi.org/10.1039/C4TA01562B

Zhu, B., Liu, N., McDowell, M., et al.: Interfacial stabilizing effect of ZnO on Si anodes for lithium ion battery. Nano Energy 13, 620–625 (2015). https://doi.org/10.1016/j.nanoen.2015.03.019

Amine, K., Belharouak, I., Chen, Z.H., et al.: Nanostructured anode material for high-power battery system in electric vehicles. Adv. Mater. 22, 3052–3057 (2010). https://doi.org/10.1002/adma.201000441

Wang, B., Hu, S.S., Gu, L., et al.: A porous mooncake-shaped Li4Ti5O12 anode material modified by SmF3 and its electrochemical performance in lithium ion batteries. Chem. Eur. J. 26, 17097–17102 (2020). https://doi.org/10.1002/chem.202002095

Jo, C., Kim, Y., Hwang, J., et al.: Block copolymer directed ordered mesostructured TiNb2O7 multimetallic oxide constructed of nanocrystals as high power Li-ion battery anodes. Chem. Mater. 26, 3508–3514 (2014). https://doi.org/10.1021/cm501011d

Tian, S., Xing, A., Tang, H., et al.: Enhanced cycling stability of TiO2-coated V2O5 nanorods through a surface sol–gel process for lithium ion battery applications. J. Mater. Chem. A 2, 2896 (2014). https://doi.org/10.1039/c3ta14364c

Wang, X.L., Zhang, J.M., Kong, X., et al.: Increasing rigidness of carbon coating for improvement of electrochemical performances of Co3O4 in Li-ion batteries. Carbon 104, 1–9 (2016). https://doi.org/10.1016/j.carbon.2016.03.027

Yesibolati, N., Shahid, M., Chen, W., et al.: SnO2 anode surface passivation by atomic layer deposited HfO2 improves Li-ion battery performance. Small 10, 2849–2858 (2014). https://doi.org/10.1002/smll.201303898

Jung, M.H.: Carbon-coated ZnO mat passivation by atomic-layer-deposited HfO2 as an anode material for lithium-ion batteries. J. Colloid Interface Sci. 505, 631–641 (2017). https://doi.org/10.1016/j.jcis.2017.06.069

Cheng, Q.H., He, W., Zhang, X.D., et al.: Modification of Li2MnSiO4 cathode materials for lithium-ion batteries: a review. J. Mater. Chem. A 5, 10772–10797 (2017). https://doi.org/10.1039/c7ta00034k

Nayak, P.K., Erickson, E.M., Schipper, F., et al.: Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv. Energy Mater. 8, 1702397 (2018). https://doi.org/10.1002/aenm.201702397

Liu, J., Banis, M.N., Sun, Q., et al.: Rational design of atomic-layer-deposited LiFePO4 as a high-performance cathode for lithium-ion batteries. Adv. Mater. 26, 6472–6477 (2014). https://doi.org/10.1002/adma.201401805

Dai, X.Y., Wang, L.P., Xu, J., et al.: Improved electrochemical performance of LiCoO2 electrodes with ZnO coating by radio frequency magnetron sputtering. ACS Appl. Mater. Interfaces 6, 15853–15859 (2014). https://doi.org/10.1021/am503260s

Han, B.H., Paulauskas, T., Key, B., et al.: Understanding the role of temperature and cathode composition on interface and bulk: optimizing aluminum oxide coatings for Li-ion cathodes. ACS Appl. Mater. Interfaces 9, 14769–14778 (2017). https://doi.org/10.1021/acsami.7b00595

Zhou, A.J., Lu, Y.T., Wang, Q.J., et al.: Sputtering TiO2 on LiCoO2 composite electrodes as a simple and effective coating to enhance high-voltage cathode performance. J. Power Sources 346, 24–30 (2017). https://doi.org/10.1016/j.jpowsour.2017.02.035

Teranishi, T., Inohara, M., Kano, J., et al.: Synthesis of nano-crystalline LiNbO3-decorated LiCoO2 and resulting high-rate capabilities. Solid State Ion. 314, 57–60 (2018). https://doi.org/10.1016/j.ssi.2017.11.020

Zhou, A.J., Xu, J., Dai, X.Y., et al.: Improved high-voltage and high-temperature electrochemical performances of LiCoO2 cathode by electrode sputter-coating with Li3PO4. J. Power Sources 322, 10–16 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.092

Liu, H.M., Saikia, D., Wu, H.C., et al.: Towards an understanding of the role of hyper-branched oligomers coated on cathodes, in the safety mechanism of lithium-ion batteries. RSC Adv. 4, 56147–56155 (2014). https://doi.org/10.1039/c4ra09220a

Xie, M., Li, B., Zhou, Y.: Free-standing high-voltage LiCoO2/multi-wall carbon nanotube paper electrodes with extremely high areal mass loading for lithium ion batteries. J. Mater. Chem. A 3, 23180–23184 (2015). https://doi.org/10.1039/c5ta06823a

Tebbe, J.L., Holder, A.M., Musgrave, C.B.: Mechanisms of LiCoO2 cathode degradation by reaction with HF and protection by thin oxide coatings. ACS Appl. Mater. Interfaces 7, 24265–24278 (2015). https://doi.org/10.1021/acsami.5b07887

Xiao, B., Liu, H., Chen, N., et al.: Size-mediated recurring spinel sub-nanodomains in Li- and Mn-rich layered cathode materials. Angew. Chem. Int. Ed. 59, 14313–14320 (2020). https://doi.org/10.1002/anie.202005337

Sarkar, S., Patel, R.L., Liang, X., et al.: Unveiling the role of CeO2 atomic layer deposition coatings on LiMn2O4 cathode materials: an experimental and theoretical study. ACS Appl. Mater. Interfaces 9, 30599–30607 (2017). https://doi.org/10.1021/acsami.7b06988

Xiao, B., Liu, J., Sun, Q., et al.: Unravelling the role of electrochemically active FePO4 coating by atomic layer deposition for increased high-voltage stability of LiNi0.5Mn1.5O4 cathode material. Adv. Sci. 2, 1500022 (2015). https://doi.org/10.1002/advs.201500022

Shapira, A., Tiurin, O., Solomatin, N., et al.: Robust AlF3 atomic layer deposition protective coating on LiMn1.5Ni0.5O4 particles: an advanced Li-ion battery cathode material powder. ACS Appl. Energy Mater. 1, 6809–6823 (2018). https://doi.org/10.1021/acsaem.8b01048

Cheng, F., Xin, Y., Huang, Y., et al.: Enhanced electrochemical performances of 5 V spinel LiMn1.58Ni0.42O4 cathode materials by coating with LiAlO2. J. Power Sources 239, 181–188 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.143

Kim, C.A., Choi, H.J., Lee, J.H., et al.: Influence of surface modification on electrochemical performance of high voltage spinel ordered-LiNi0.5Mn1.5O4 exposed to 53 V for 100 h before and after surface modification with ALD method. Electrochim. Acta 184, 134–142 (2015). https://doi.org/10.1016/j.electacta.2015.10.041

Zou, Y., Yang, X., Lv, C., et al.: Multishelled Ni-rich Li(NixCoyMnz)O2 hollow fibers with low cation mixing as high-performance cathode materials for Li-ion batteries. Adv. Sci. 4, 1600262 (2017). https://doi.org/10.1002/advs.201600262

Li, X., Liu, J., Banis, M.N., et al.: Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy Environ. Sci. 7, 768–778 (2014). https://doi.org/10.1039/c3ee42704h

Sun, B., El Kazzi, M., Müller, E., et al.: Toward high-performance Li(NixCoyMnz)O2 cathodes: facile fabrication of an artificial polymeric interphase using functional polyacrylates. J. Mater. Chem. A 6, 17778–17786 (2018). https://doi.org/10.1039/c8ta03954b

Srur-Lavi, O., Miikkulainen, V., Markovsky, B., et al.: Studies of the electrochemical behavior of LiNi0.80Co0.15Al0.05O2 electrodes coated with LiAlO2. J. Electrochem. Soc. 164, A3266–A3275 (2017). https://doi.org/10.1149/2.1631713jes

Hu, E., Yu, X., Lin, R., et al.: Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat. Energy 3, 690–698 (2018). https://doi.org/10.1038/s41560-018-0207-z

Hu, E., Bak, S.M., Liu, Y., et al.: Utilizing environmental friendly iron as a substitution element in spinel structured cathode materials for safer high energy lithium-ion batteries. Adv. Energy Mater. 6, 1501662 (2016). https://doi.org/10.1002/aenm.201501662

He, W., Liu, P., Qu, B., et al.: Uniform Na+ doping-induced defects in Li– and Mn-Rich cathodes for high-performance lithium-ion batteries. Adv. Sci. 6, 1802114 (2019). https://doi.org/10.1002/advs.201802114

Zhou, F., Zhao, X., Dahn, J.R.: Impact of Al or Mg substitution on the thermal stability of Li1.05Mn1.95−zMzO4 (M = Al or Mg). J. Electrochem. Soc. 157, A798–A801 (2010). https://doi.org/10.1149/1.3425606

Ji, W., Wang, F., Liu, D., et al.: Building thermally stable Li-ion batteries using a temperature-responsive cathode. J. Mater. Chem. A 4, 11239–11246 (2016). https://doi.org/10.1039/c6ta03407a

Kise, M., Yoshioka, S., Kuriki, H.: Relation between composition of the positive electrode and cell performance and safety of lithium-ion PTC batteries. J. Power Sources 174, 861–866 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.224

Zhong, H., Kong, C., Zhan, H., et al.: Safe positive temperature coefficient composite cathode for lithium ion battery. J. Power Sources 216, 273–280 (2012). https://doi.org/10.1016/j.jpowsour.2012.05.015

Klein, M.J., Dolocan, A., Zu, C., et al.: An effective lithium sulfide encapsulation strategy for stable lithium-sulfur batteries. Adv. Energy Mater. 7, 1701122 (2017). https://doi.org/10.1002/aenm.201701122

Zu, C., Klein, M., Manthiram, A.: Activated Li2S as a high-performance cathode for rechargeable lithium-sulfur batteries. J. Phys. Chem. Lett. 5, 3986–3991 (2014). https://doi.org/10.1021/jz5021108

Ren, Y.X., Zhao, T.S., Liu, M., et al.: A self-cleaning Li-S battery enabled by a bifunctional redox mediator. J. Power Sources 361, 203–210 (2017). https://doi.org/10.1016/j.jpowsour.2017.06.083

Kim, K.R., Lee, K.S., Ahn, C.Y., et al.: Discharging a Li-S battery with ultra-high sulphur content cathode using a redox mediator. Sci Rep 6, 32433 (2016). https://doi.org/10.1038/srep32433

Liu, M., Ren, Y.X., Jiang, H.R., et al.: An efficient Li2S-based lithium-ion sulfur battery realized by a bifunctional electrolyte additive. Nano Energy 40, 240–247 (2017). https://doi.org/10.1016/j.nanoen.2017.08.017

Yu, M., Yuan, W., Li, C., et al.: Performance enhancement of a graphene-sulfur composite as a lithium-sulfur battery electrode by coating with an ultrathin Al2O3 film via atomic layer deposition. J. Mater. Chem. A 2, 7360–7366 (2014). https://doi.org/10.1039/c4ta00234b

Johnson, L., Li, C., Liu, Z., et al.: The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. Nat. Chem. 6, 1091–1099 (2014). https://doi.org/10.1038/nchem.2101

Gao, X., Chen, Y., Johnson, L., et al.: Erratum: promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions. Nat. Mater. 15, 918–918 (2016). https://doi.org/10.1038/nmat4691

Feng, W., Long, P., Feng, Y., et al.: Two-dimensional fluorinated graphene: synthesis, structures, properties and applications. Adv. Sci. 3, 1500413 (2016). https://doi.org/10.1002/advs.201500413

Sato, Y., Kume, T., Hagiwara, R., et al.: Reversible intercalation of HF in fluorine-GICs. Carbon 41, 351–357 (2003). https://doi.org/10.1016/S0008-6223(02)00311-1

Dubecky, M., Otyepkova, E., Lazar, P., et al.: Reactivity of fluorographene: a facile way toward graphene derivatives. J. Phys. Chem. Lett. 6, 1430–1434 (2015). https://doi.org/10.1021/acs.jpclett.5b00565

Matsuo, Y., Nakajima, T.: Carbon-fluorine bondings of fluorinated fullerene and graphite. Z. Anorg. Allg. Chem. 621, 1943–1950 (1995). https://doi.org/10.1002/zaac.19956211119

Zhang, W., Dubois, M., Guerin, K., et al.: Effect of curvature on C-F bonding in fluorinated carbons: from fullerene and derivatives to graphite. Phys. Chem. Chem. Phys. 12, 13881398 (2010). https://doi.org/10.1039/b914853a

Lam, P., Yazami, R.: Physical characteristics and rate performance of (CFx)n (0.33<x<0.66). https://doi.org/10.1016/j.jpowsour.2005.05.022

Panich, A.M., Nakajima, T.: Physical properties and C-F bonding in fluorine-graphite intercalation compounds as seen by NMR. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A Mol. Cryst. Liq. Cryst. 340, 77–82 (2006). https://doi.org/10.1080/10587250008025446

Li, Y., Chen, Y., Feng, W., et al.: The improved discharge performance of Li/CFx batteries by using multi-walled carbon nanotubes as conductive additive. J. Power Sources 196, 2246–2250 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.005

Yang, W., Dai, Y., Cai, S., et al.: Graphene/Au composite paper as flexible current collector to improve electrochemical performances of CFx cathode. J. Power Sources 255, 37–42 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.122

Li, Y., Feng, W.: The tunable electrochemical performances of carbon fluorides/manganese dioxide hybrid cathodes by their arrangements. J. Power Sources 274, 1292–1299 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.150

Wang, J., Sun, M., Liu, Y., et al.: Unraveling nanoscale electrochemical dynamics of graphite fluoride by in situ electron microscopy: key difference between lithiation and sodiation. J. Mater. Chem. A 8, 6105–6111 (2020). https://doi.org/10.1039/d0ta00093k

Han, J.G., Kim, K., Lee, Y., et al.: Scavenging materials to stabilize LiPF6-containing carbonate-based electrolytes for Li-ion batteries. Adv. Mater. 31, e1804822 (2019). https://doi.org/10.1002/adma.201804822

Yang, Y., Yu, D., Wang, H., et al.: Smart electrochemical energy storage devices with self-protection and self-adaptation abilities. Adv. Mater. 29, 1703040 (2017). https://doi.org/10.1002/adma.201703040

Liu, K., Liu, Y., Lin, D., et al.: Materials for lithium-ion battery safety. Sci. Adv. 4, eaas9820 (2018). https://doi.org/10.1126/sciadv.aas9820

Lin, X., Zhou, G., Liu, J., et al.: Rechargeable battery electrolytes capable of operating over wide temperature windows and delivering high safety. Adv. Energy Mater. 10, 2001235 (2020). https://doi.org/10.1002/aenm.202001235

Zheng, J., Engelhard, M.H., Mei, D., et al.: Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2, 17012 (2017). https://doi.org/10.1038/nenergy.2017.12

Sun, H., Zhu, G., Zhu, Y., et al.: High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte. Adv. Mater. 32, e2001741 (2020). https://doi.org/10.1002/adma.202001741

Ma, Y., Zhou, Z., Li, C., et al.: Enabling reliable lithium metal batteries by a bifunctional anionic electrolyte additive. Energy Storage Mater. 11, 197–204 (2018). https://doi.org/10.1016/j.ensm.2017.10.015

Wang, G., Xiong, X., Xie, D., et al.: Suppressing dendrite growth by a functional electrolyte additive for robust Li metal anodes. Energy Storage Mater. 23, 701–706 (2019). https://doi.org/10.1016/j.ensm.2019.02.026

Han, J.G., Hwang, E., Kim, Y., et al.: Dual-functional electrolyte additives toward long-cycling lithium-ion batteries: ecofriendly designed carbonate derivatives. ACS Appl. Mater. Interfaces 12, 24479–24487 (2020). https://doi.org/10.1021/acsami.0c04372

Han, J.G., Hwang, C., Kim, S.H., et al.: An antiaging electrolyte additive for high-energy-density lithium-ion batteries. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.202000563

Pham, H.Q., Mirolo, M., Tarik, M., et al.: Multifunctional electrolyte additive for improved interfacial stability in Ni-rich layered oxide full-cells. Energy Storage Mater. 33, 216–229 (2020). https://doi.org/10.1016/j.ensm.2020.08.026

Han, J.G., Jeong, M.Y., Kim, K., et al.: An electrolyte additive capable of scavenging HF and PF5 enables fast charging of lithium-ion batteries in LiPF6-based electrolytes. J. Power Sources 446, 227366 (2020). https://doi.org/10.1016/j.jpowsour.2019.227366

Dagger, T., Grützke, M., Reichert, M., et al.: Investigation of lithium ion battery electrolytes containing flame retardants in combination with the film forming electrolyte additives vinylene carbonate, vinyl ethylene carbonate and fluoroethylene carbonate. J. Power Sources 372, 276–285 (2017). https://doi.org/10.1016/j.jpowsour.2017.10.058

Zeng, Z., Wu, B., Xiao, L., et al.: Safer lithium ion batteries based on nonflammable electrolyte. J. Power Sources 279, 6–12 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.150

Rong, H., Xu, M., Xie, B., et al.: A novel imidazole-based electrolyte additive for improved electrochemical performance at elevated temperature of high-voltage LiNi0.5Mn1.5O4 cathodes. J. Power Sources 329, 586–593 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.120

Wang, R., Li, X., Wang, Z., et al.: Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-toluenesulfonyl isocyanate as electrolyte additive. Nano Energy 34, 131–140 (2017). https://doi.org/10.1016/j.nanoen.2017.02.037

Ignatova, A.A., Yarmolenko, O.V., Tulibaeva, G.Z., et al.: Influence of 15-crown-5 additive to a liquid electrolyte on the performance of Li/CFx-systems at temperatures up to −50 °C. J. Power Sources 309, 116–121 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.075

Wen, L., Liang, J., Chen, J., et al.: Smart materials and design toward safe and durable lithium ion batteries. Small Methods 3, 1900323 (2019). https://doi.org/10.1002/smtd.201900323

Janssen, P., Streipert, B., Krafft, R., et al.: Shutdown potential adjustment of modified carbene adducts as additives for lithium ion battery electrolytes. J. Power Sources 367, 72–79 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.023

Noelle, D.J., Shi, Y., Wang, M., et al.: Aggressive electrolyte poisons and multifunctional fluids comprised of diols and diamines for emergency shutdown of lithium-ion batteries. J. Power Sources 384, 93–97 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.068

Xia, L., Wang, D., Yang, H., et al.: An electrolyte additive for thermal shutdown protection of Li-ion batteries. Electrochem. Commun. 25, 98–100 (2012). https://doi.org/10.1016/j.elecom.2012.09.038

Dagger, T., Lürenbaum, C., Schappacher, F.M., et al.: Electrochemical performance evaluations and safety investigations of pentafluoro(phenoxy)cyclotriphosphazene as a flame retardant electrolyte additive for application in lithium ion battery systems using a newly designed apparatus for improved self-extinguishing time measurements. J. Power Sources 342, 266–272 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.007

Fan, X., Ji, X., Chen, L., et al.: All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4, 882–890 (2019). https://doi.org/10.1038/s41560-019-0474-3

Zhao, C.Z., Zhao, B.C., Yan, C., et al.: Liquid phase therapy to solid electrolyte-electrode interface in solid-state Li metal batteries: a review. Energy Storage Mater. 24, 75–84 (2020). https://doi.org/10.1016/j.ensm.2019.07.026

Cheng, Q., Li, A., Li, N., et al.: Stabilizing solid electrolyte-anode interface in Li-metal batteries by boron nitride-based nanocomposite coating. Joule 3, 1510–1522 (2019). https://doi.org/10.1016/j.joule.2019.03.022

Jiang, T., He, P., Wang, G., et al.: Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Adv. Energy Mater. 10, 1903376 (2020). https://doi.org/10.1002/aenm.201903376

Zhao, N., Khokhar, W., Bi, Z., et al.: Solid garnet batteries. Joule 3, 1190–1199 (2019). https://doi.org/10.1016/j.joule.2019.03.019

Huo, H., Chen, Y., Luo, J., et al.: Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Adv. Energy Mater. 9, 1804004 (2019). https://doi.org/10.1002/aenm.201804004

Sun, X., Stavola, A.M., Cao, D., et al.: Operando EDXRD study of all-solid-state lithium batteries coupling thioantimonate superionic conductors with metal sulfide. Adv. Energy Mater. 11, 2002861 (2020). https://doi.org/10.1002/aenm.202002861

Xu, H., Zhang, H., Ma, J., et al.: Overcoming the challenges of 5 V spinel LiNi0.5Mn1.5O4 cathodes with solid polymer electrolytes. ACS Energy Lett. 4, 2871–2886 (2019). https://doi.org/10.1021/acsenergylett.9b01871

Zhao, Q., Liu, X., Stalin, S., et al.: Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365–373 (2019). https://doi.org/10.1038/s41560-019-0349-7

Liang, J., Chen, D., Adair, K., et al.: Insight into prolonged cycling life of 4 V all-solid-state polymer batteries by a high-voltage stable binder. Adv. Energy Mater. 11, 2002455 (2020). https://doi.org/10.1002/aenm.202002455

Zhang, M., Yu, S., Mai, Y., et al.: A single-ion conducting hyperbranched polymer as a high performance solid-state electrolyte for lithium ion batteries. Chem. Commun. 55, 6715–6718 (2019). https://doi.org/10.1039/c9cc02351h

Bouchet, R., Maria, S., Meziane, R., et al.: Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013). https://doi.org/10.1038/nmat3602

Cao, C., Li, Y., Feng, Y., et al.: A solid-state single-ion polymer electrolyte with ultrahigh ionic conductivity for dendrite-free lithium metal batteries. Energy Storage Mater. 19, 401–407 (2019). https://doi.org/10.1016/j.ensm.2019.03.004

Li, Z., Liu, F., Chen, S., et al.: Single Li ion conducting solid-state polymer electrolytes based on carbon quantum dots for Li-metal batteries. Nano Energy 82, 105698 (2021). https://doi.org/10.1016/j.nanoen.2020.105698

Zhou, J., Qian, T., Liu, J., et al.: High-safety all-solid-state lithium-metal battery with high-ionic-conductivity thermoresponsive solid polymer electrolyte. Nano Lett. 19, 3066–3073 (2019). https://doi.org/10.1021/acs.nanolett.9b00450

Yang, H., Leow, W.R., Chen, X.: Thermal-responsive polymers for enhancing safety of electrochemical storage devices. Adv. Mater. 30, e1704347 (2018). https://doi.org/10.1002/adma.201704347

Yuan, M., Liu, K.: Rational design on separators and liquid electrolytes for safer lithium-ion batteries. J. Energy Chem. 43, 58–70 (2020). https://doi.org/10.1016/j.jechem.2019.08.008

Lee, J., Lee, C.-L., Park, K., et al.: Synthesis of an Al2O3-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries. J. Power Sources 248, 1211–1217 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.056

Zhong, G., Wang, Y., Wang, C., et al.: An AlOOH-coated polyimide electrospun fibrous membrane as a high-safety lithium-ion battery separator. Ionics 25, 2677–2684 (2018). https://doi.org/10.1007/s11581-018-2716-y

Liu, J., Qin, J., Mo, Y., et al.: Polyphenylene sulfide separator for high safety lithium-ion batteries. J. Electrochem. Soc. 166, A1644–A1652 (2019). https://doi.org/10.1149/2.1041908jes

Li, W., Li, X., Yuan, A., et al.: Al2O3/poly(ethylene terephthalate) composite separator for high-safety lithium-ion batteries. Ionics 22, 2143–2149 (2016). https://doi.org/10.1007/s11581-016-1752-8

Tian, Y., Lin, C., Wang, Z., et al.: Polymer of intrinsic microporosity-based macroporous membrane with high thermal stability as a Li-ion battery separator. RSC Adv. 9, 21539–21543 (2019). https://doi.org/10.1039/c9ra02308a

Lee, Y., Ryou, M.H., Seo, M., et al.: Effect of polydopamine surface coating on polyethylene separators as a function of their porosity for high-power Li-ion batteries. Electrochim. Acta 113, 433–438 (2013). https://doi.org/10.1016/j.electacta.2013.09.104

Li, Y., Pu, H., Wei, Y.: Polypropylene/polyethylene multilayer separators with enhanced thermal stability for lithium-ion battery via multilayer coextrusion. Electrochim. Acta 264, 140–149 (2018). https://doi.org/10.1016/j.electacta.2018.01.114

Ma, S., Lin, H., Yang, L., et al.: High thermal stability and low impedance polypropylene separator coated with aluminum phosphate. Electrochim. Acta (2019). https://doi.org/10.1016/j.electacta.2019.07.039

Xiao, W., Gong, Y., Wang, H., et al.: Preparation and electrochemical performance of ZrO2 nanoparticle-embedded nonwoven composite separator for lithium-ion batteries. Ceram. Int. 41, 14223–14229 (2015). https://doi.org/10.1016/j.ceramint.2015.07.048

Li, Y., Pu, H.: Facile fabrication of multilayer separators for lithium-ion battery via multilayer coextrusion and thermal induced phase separation. J. Power Sources 384, 408–416 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.086

Xiong, M., Tang, H., Wang, Y., et al.: Expanded polytetrafluoroethylene reinforced polyvinylidenefluoride-hexafluoropropylene separator with high thermal stability for lithium-ion batteries. J. Power Sources 241, 203–211 (2013). https://doi.org/10.1016/j.jpowsour.2013.04.064

Woo, J.J., Zhang, Z., Dietz Rago, N.L., et al.: A high performance separator with improved thermal stability for Li-ion batteries. J. Mater. Chem. A 1, 8538–8540 (2013). https://doi.org/10.1039/c3ta12154b

Lee, T., Lee, Y., Ryou, M.H., et al.: A facile approach to prepare biomimetic composite separators toward safety-enhanced lithium secondary batteries. RSC Adv. 5, 39392–39398 (2015). https://doi.org/10.1039/c5ra01061f

Liu, K., Liu, W., Qiu, Y., et al.: Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Sci. Adv. 3, e1601978 (2017). https://doi.org/10.1126/sciadv.1601978

Jiang, X., Xiao, L., Ai, X., et al.: A novel bifunctional thermo-sensitive poly(lactic acid)@poly(butylene succinate) core-shell fibrous separator prepared by a coaxial electrospinning route for safe lithium-ion batteries. J. Mater. Chem. A 5, 23238–23242 (2017). https://doi.org/10.1039/c7ta08063h

Ji, W., Jiang, B., Ai, F., et al.: Temperature-responsive microspheres-coated separator for thermal shutdown protection of lithium ion batteries. RSC Adv. 5, 172–176 (2015). https://doi.org/10.1039/c4ra11500g

Zhang, C., Li, H., Wang, S., et al.: A polyethylene microsphere-coated separator with rapid thermal shutdown function for lithium-ion batteries. J. Energy Chem. 44, 33–40 (2020). https://doi.org/10.1016/j.jechem.2019.09.017

Lei, T., Chen, W., Hu, Y., et al.: A nonflammable and thermotolerant separator suppresses polysulfide dissolution for safe and long-cycle lithium-sulfur batteries. Adv. Energy Mater. 8, 1802441 (2018). https://doi.org/10.1002/aenm.201802441

Liao, H., Zhang, H., Qin, G., et al.: Novel core-shell ps-co-pba@SiO2 nanoparticles coated on pp separator as “thermal shutdown switch” for high safety lithium-ion batteries. Macromol. Mater. Eng. 302, 1700241 (2017). https://doi.org/10.1002/mame.201700241

Ye, Y., Chou, L.Y., Liu, Y., et al.: Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries. Nat. Energy 5, 786–793 (2020). https://doi.org/10.1038/s41560-020-00702-8

Wang, M., Shi, Y., Noelle, D.J., et al.: Internal short circuit mitigation of high-voltage lithium-ion batteries with functional current collectors. RSC Adv. 7, 45662–45667 (2017). https://doi.org/10.1039/c7ra08277k

Sharma, A., Tyagi, V.V., Chen, C.R., et al.: Review on thermal energy storage with phase change materials and applications. Renew. Sust. Energ. Rev. 13, 318–345 (2009). https://doi.org/10.1016/j.rser.2007.10.005

Lv, Y., Yang, X., Li, X., et al.: Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins. Appl. Energy 178, 376–382 (2016). https://doi.org/10.1016/j.apenergy.2016.06.058

Jiang, G., Huang, J., Fu, Y., et al.: Thermal optimization of composite phase change material/expanded graphite for Li-ion battery thermal management. Appl. Therm. Eng. 108, 1119–1125 (2016). https://doi.org/10.1016/j.applthermaleng.2016.07.197

Alipanah, M., Li, X.: Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams. Int. J. Heat Mass Transf. 102, 1159–1168 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.010

Umair, M.M., Zhang, Y., Iqbal, K., et al.: Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage-a review. Appl. Energy 235, 846873 (2019). https://doi.org/10.1016/j.apenergy.2018.11.017

Wang, Q., Rao, Z., Huo, Y., et al.: Thermal performance of phase change material/oscillating heat pipe-based battery thermal management system. Int. J. Therm. Sci. 102, 9–16 (2016). https://doi.org/10.1016/j.ijthermalsci.2015.11.005

Wang, Q., Jiang, B., Xue, Q.F., et al.: Experimental investigation on EV battery cooling and heating by heat pipes. Appl. Therm. Eng. 88, 54–60 (2015). https://doi.org/10.1016/j.applthermaleng.2014.09.083

Hallaj, S.A., Selman, J.R.: A novel thermal management system for electric vehicle batteries using phase-change material. J. Electrochem. Soc. 147, 3231 (2000). https://doi.org/10.1149/1.1393888