Strategies of engineering 2D nanomaterial-based electrocatalysts toward hydrogen evolution reaction
Tóm tắt
Electrochemical water splitting driven by renewable energy-derived electricity is considered as the most promising pathway for delivering clean and sustainable hydrogen production. The key to achieving an efficient water splitting process is developing highly active electrocatalysts. Two-dimensional (2D) nanomaterials hold great promise in the electrocatalysis field due to their unique physicochemical properties. Some of them are not active enough because of the poor intrinsic activity, low density of active sites or low electrical conductivity. Some are inert for electrocatalytic reactions, but are able to work as the functional substrates for hybrid electrocatalysts. Thus, tremendous strategies have been developed to modulate the physicochemical and electronic properties of 2D nanomaterial-based electrocatalysts, and to make full use of the functionalities of functional 2D nanomaterial substrates to achieve fast catalytic reaction kinetics. In this review, the recent progress on the well-established design strategies for the 2D nanomaterials-based electrocatalysts is highlighted. The perspectives on the current challenges and future development of 2D electrocatalysts are addressed.
Từ khóa
Tài liệu tham khảo
Shi, Y., Zhang, B.: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 45, 1529–1541 (2016)
Wu, K.-H., Zeng, Q., Zhang, B., Leng, X., Su, D.-S., Gentle, I.R., Wang, D.-W.: Structural origin of the activity in Mn3O4–graphene oxide hybrid electrocatalysts for the oxygen reduction reaction. ChemSusChem. 8, 3331–3339 (2015)
Chen, Y., Rui, K., Zhu, J., Dou, S.X., Sun, W.: Recent progress on nickel-based oxide/(Oxy)hydroxide electrocatalysts for the oxygen evolution reaction. Chem. Eur. J. 25, 703–713 (2019)
Xie, Y., Cai, J., Wu, Y., Zang, Y., Zheng, X., Ye, J., Cui, P., Niu, S., Liu, Y., Zhu, J., Liu, X., Wang, G., Qian, Y.: Boosting water dissociation kinetics on Pt–Ni nanowires by N-induced orbital tuning. Adv. Mater. 31, 1807780 (2019)
Zhao, G., Rui, K., Dou, S.X., Sun, W.: Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv. Funct. Mater. 28, 1803291 (2018)
Zheng, X., Chen, Y., Zheng, X., Zhao, G., Rui, K., Li, P., Xu, X., Cheng, Z., Dou, S.X., Sun, W.: Electronic structure engineering of LiCoO2 toward enhanced oxygen electrocatalysis. Adv. Energy Mater. 9, 1803482 (2019)
Zang, Y., Niu, S., Wu, Y., Zheng, X., Cai, J., Ye, J., Xie, Y., Liu, Y., Zhou, J., Zhu, J., Liu, X., Wang, G., Qian, Y.: Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. Nat. Commun. 10, 1217 (2019)
Li, C., Baek, J.-B.: Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction. ACS Omega (2019). https://doi.org/10.1021/acsomega.9b03550
Bae, S.-Y., Mahmood, J., Jeon, I.-Y., Baek, J.-B.: Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. Nanosc. Horizons. 5, 43–56 (2020)
Zhang, J., Liu, J., Xi, L., Yu, Y., Chen, N., Sun, S., Wang, W., Lange, K.M., Zhang, B.: Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 140, 3876–3879 (2018)
Yang, Z., Ren, J., Zhang, Z., Chen, X., Guan, G., Qiu, L., Zhang, Y., Peng, H.: Recent advancement of nanostructured carbon for energy applications. Chem. Rev. 115, 5159–5223 (2015)
Zhang, H.: Ultrathin two-dimensional nanomaterials. ACS Nano. 9, 9451–9469 (2015)
Xue, Y., Zhang, Q., Wang, W., Cao, H., Yang, Q., Fu, L.: Opening two-dimensional materials for energy conversion and storage: a concept. Adv. Energy Mate. DOI: 10.1002/aenm.2016026841602684-n/a.
Tao, H., Gao, Y., Talreja, N., Guo, F., Texter, J., Yan, C., Sun, Z.: Two-dimensional nanosheets for electrocatalysis in energy generation and conversion. J. Mater. Chem. A. 5, 7257–7284 (2017)
Zhou, Q., Chen, Y., Zhao, G., Lin, Y., Yu, Z., Xu, X., Wang, X., Liu, H.K., Sun, W., Dou, S.X.: Active-site-enriched iron-doped nickel/cobalt hydroxide nanosheets for enhanced oxygen evolution reaction. ACS Catal. 8, 5382–5390 (2018)
Wang, Y., Mao, J., Meng, X., Yu, L., Deng, D., Bao, X.: Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chem. Rev. 119, 1806–1854 (2019)
Chen, G., Xu, C., Huang, X., Ye, J., Gu, L., Li, G., Tang, Z., Wu, B., Yang, H., Zhao, Z., Zhou, Z., Fu, G., Zheng, N.: Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 15, 564 (2016)
Choi, C.H., Kim, M., Kwon, H.C., Cho, S.J., Yun, S., Kim, H.-T., Mayrhofer, K.J.J., Kim, H., Choi, M.: Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016)
Han, L., Dong, S., Wang, E.: Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 28, 9266–9291 (2016)
Tang, C., Wang, H.-F., Chen, X., Li, B.-Q., Hou, T.-Z., Zhang, B., Zhang, Q., Titirici, M.-M., Wei, F.: Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 28, 6845–6851 (2016)
Strmcnik, D., Lopes, P.P., Genorio, B., Stamenkovic, V.R., Markovic, N.M.: Design principles for hydrogen evolution reaction catalyst materials. Nano Energy. 29, 29–36 (2016)
Seh, Z.W., Kibsgaard, J., Dickens, C.F., Chorkendorff, I., Nørskov, J.K., Jaramillo, T.F.: Combining theory and experiment in electrocatalysis: insights into materials design. Science. 355, eaad4998 (2017)
Novoselov, K.S., Mishchenko, A., Carvalho, A., Castro Neto, A.H.: 2D materials and van der Waals heterostructures. Science. 353, aac943 (2016)
Jaramillo, T.F., Jørgensen, K.P., Bonde, J., Nielsen, J.H., Horch, S., Chorkendorff, I.: Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science. 317, 100–102 (2007)
Zheng, Y., Jiao, Y., Zhu, Y., Li, L.H., Han, Y., Chen, Y., Du, A., Jaroniec, M., Qiao, S.Z.: Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5, 3783 (2014)
Zhu, Y.P., Guo, C., Zheng, Y., Qiao, S.Z.: Surface and Interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. (2017). https://doi.org/10.1021/acs.accounts.6b00635
Zhang, L., Xia, Z.: Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J. Phys. Chem. C. 115, 11170–11176 (2011)
Deng, D., Pan, X., Yu, L., Cui, Y., Jiang, Y., Qi, J., Li, W.-X., Fu, Q., Ma, X., Xue, Q., Sun, G., Bao, X.: Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 23, 1188–1193 (2011)
Li, Y., Zhou, Z., Shen, P., Chen, Z.: Spin gapless semiconductor−metal−half-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano. 3, 1952–1958 (2009)
Jiao, Y., Zheng, Y., Davey, K., Qiao, S.-Z.: Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat. Energy. 1, 16130 (2016)
Qu, K., Zheng, Y., Zhang, X., Davey, K., Dai, S., Qiao, S.Z.: Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms. ACS Nano. 11, 7293–7300 (2017)
Wang, X., Wang, J., Wang, D., Dou, S., Ma, Z., Wu, J., Tao, L., Shen, A., Ouyang, C., Liu, Q., Wang, S.: One-pot synthesis of nitrogen and sulfur co-doped graphene as efficient metal-free electrocatalysts for the oxygen reduction reaction. Chem. Commun. 50, 4839–4842 (2014)
Huang, X., Leng, M., Xiao, W., Li, M., Ding, J., Tan, T.L., Lee, W.S.V., Xue, J.: Activating basal planes and S-terminated edges of MoS2 toward more efficient hydrogen evolution. Adv. Funct. Mater. 27, 1604943 (2017)
Xie, J., Zhang, J., Li, S., Grote, F., Zhang, X., Zhang, H., Wang, R., Lei, Y., Pan, B., Xie, Y.: Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc 135, 17881–17888 (2013)
Zhang, J., Wang, T., Liu, P., Liu, S., Dong, R., Zhuang, X., Chen, M., Feng, X.: Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production. Energy Environ. Sci. 9, 2789–2793 (2016)
Zhao, G., Wang, X., Wang, S., Rui, K., Chen, Y., Yu, H., Ma, J., Dou, S.X., Sun, W.: Heteroatom-doped MoSe2 nanosheets with enhanced hydrogen evolution kinetics for alkaline water splitting. Chem. Asian J. 14, 301–306 (2019)
Ma, X., Li, J., An, C., Feng, J., Chi, Y., Liu, J., Zhang, J., Sun, Y.: Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production. Nano Res. 9, 2284–2293 (2016)
Lau, T.H.M., Lu, X., Kulhavý, J., Wu, S., Lu, L., Wu, T.-S., Kato, R., Foord, J.S., Soo, Y.-L., Suenaga, K., Tsang, S.C.E.: Transition metal atom doping of the basal plane of MoS2 monolayer nanosheets for electrochemical hydrogen evolution. Chem. Sci. 9, 4769–4776 (2018)
Gao, G., Sun, Q., Du, A.: Activating catalytic inert basal plane of molybdenum disulfide to optimize hydrogen evolution activity via defect doping and strain engineering. J. Phys. Chem. C. 120, 16761–16766 (2016)
Zhang, L., Jia, Y., Gao, G., Yan, X., Chen, N., Chen, J., Soo, M.T., Wood, B., Yang, D., Du, A., Yao, X.: Graphene defects trap atomic ni species for hydrogen and oxygen evolution reactions. Chem. 4, 285–297 (2018)
Yan, X., Jia, Y., Yao, X.: Defects on carbons for electrocatalytic oxygen reduction. Soc. Rev, Chem (2018). https://doi.org/10.1039/C7CS00690J
Chen, Y., Huang, S., Ji, X., Adepalli, K., Yin, K., Ling, X., Wang, X., Xue, J., Dresselhaus, M., Kong, J., Yildiz, B.: Tuning electronic structure of single layer MoS2 through defect and interface engineering. ACS Nano. 12, 2569–2579 (2018)
Zhang, J., Wang, Y., Cui, J., Wu, J., Li, Y., Zhu, T., Kang, H., Yang, J., Sun, J., Qin, Y., Zhang, Y., Ajayan, P.M., Wu, Y.: Water-Soluble defect-rich MoS2 ultrathin nanosheets for enhanced hydrogen evolution. J. Phys. Chem. Lett. 10, 3282–3289 (2019)
Li, H., Tsai, C., Koh, A.L., Cai, L., Contryman, A.W., Fragapane, A.H., Zhao, J., Han, H.S., Manoharan, H.C., Abild-Pedersen, F., Nørskov, J.K., Zheng, X.: Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48–54 (2015)
Ouyang, Y., Ling, C., Chen, Q., Wang, Z., Shi, L., Wang, J.: Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects. Chem. Mater. 28, 4390–4396 (2016)
Tsai, C., Li, H., Park, S., Park, J., Han, H.S., Nørskov, J.K., Zheng, X., Abild-Pedersen, F.: Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nat. Commun. 8, 15113 (2017)
Li, H., Du, M., Mleczko, M.J., Koh, A.L., Nishi, Y., Pop, E., Bard, A.J., Zheng, X.: Kinetic study of hydrogen evolution reaction over strained MoS2 with sulfur vacancies using scanning electrochemical microscopy. J. Am. Chem. Soc. 138, 5123–5129 (2016)
Xie, J., Zhang, H., Li, S., Wang, R., Sun, X., Zhou, M., Zhou, J., Lou, X.W., Xie, Y.: Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 25, 5807–5813 (2013)
Ye, G., Gong, Y., Lin, J., Li, B., He, Y., Pantelides, S.T., Zhou, W., Vajtai, R., Ajayan, P.M.: Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett. 16, 1097–1103 (2016)
Li, H., Tsai, C., Koh, A.L., Cai, L., Contryman, A.W., Fragapane, A.H., Zhao, J., Han, H.S., Manoharan, H.C., Abild-Pedersen, F., Nørskov, J.K., Zheng, X.: Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48–53 (2016)
Jia, Y., Zhang, L., Du, A., Gao, G., Chen, J., Yan, X., Brown, C.L., Yao, X.: Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 28, 9532–9538 (2016)
Zhang, J., Wang, T., Pohl, D., Rellinghaus, B., Dong, R., Liu, S., Zhuang, X., Feng, X.: Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem. Int. Edit. 55, 6702–6707 (2016)
Zhao, G., Lin, Y., Rui, K., Zhou, Q., Chen, Y., Dou, S.X., Sun, W.: Epitaxial growth of Ni(OH)2 nanoclusters on MoS2 nanosheets for enhanced alkaline hydrogen evolution reaction. Nanoscale. 10, 19074–19081 (2018)
Chen, Y., Wang, X., Lao, M., Rui, K., Zheng, X., Yu, H., Ma, J., Dou, S.X., Sun, W.: Electrocatalytically inactive SnS2 promotes water adsorption/dissociation on molybdenum dichalcogenides for accelerated alkaline hydrogen evolution. Nano Energy. 64, 103918 (2019)
Zhou, Q., Zhao, G., Rui, K., Chen, Y., Xu, X., Dou, S.X., Sun, W.: Engineering additional edge sites on molybdenum dichalcogenides toward accelerated alkaline hydrogen evolution kinetics. Nanoscale. 11, 717–724 (2019)
Duan, J., Chen, S., Jaroniec, M., Qiao, S.Z.: Porous C3N4 Nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS Nano. 9, 931–940 (2015)
Lu, Z., Wang, B., Hu, Y., Liu, W., Zhao, Y., Yang, R., Li, Z., Luo, J., Chi, B., Jiang, Z., Li, M., Mu, S., Liao, S., Zhang, J., Sun, X.: An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem. Int. Ed. 58, 2622–2626 (2019)
Qi, K., Cui, X., Gu, L., Yu, S., Fan, X., Luo, M., Xu, S., Li, N., Zheng, L., Zhang, Q., Ma, J., Gong, Y., Lv, F., Wang, K., Huang, H., Zhang, W., Guo, S., Zheng, W., Liu, P.: Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 10, 5231 (2019)
Zhang, J., Zhao, Y., Guo, X., Chen, C., Dong, C.-L., Liu, R.-S., Han, C.-P., Li, Y., Gogotsi, Y., Wang, G.: Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 1, 985–992 (2018)
Ye, S., Luo, F., Zhang, Q., Zhang, P., Xu, T., Wang, Q., He, D., Guo, L., Zhang, Y., He, C., Ouyang, X., Gu, M., Liu, J., Sun, X.: Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. Energy Environ. Sci. 12, 1000–1007 (2019)
Qiu, H.-J., Ito, Y., Cong, W., Tan, Y., Liu, P., Hirata, A., Fujita, T., Tang, Z., Chen, M.: Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem. Int. Edit. 54, 14031–14035 (2015)
Fei, H., Dong, J., Arellano-Jiménez, M.J., Ye, G., Dong Kim, N., Samuel, E.L.G., Peng, Z., Zhu, Z., Qin, F., Bao, J., Yacaman, M.J., Ajayan, P.M., Chen, D., Tour, J.M.: Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 6, 8668 (2015)
Voiry, D., Salehi, M., Silva, R., Fujita, T., Chen, M., Asefa, T., Shenoy, V.B., Eda, G., Chhowalla, M.: Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013)
Lukowski, M.A., Daniel, A.S., English, C.R., Meng, F., Forticaux, A., Hamers, R.J., Jin, S.: Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ. Sci. 7, 2608–2613 (2014)
Geng, X., Sun, W., Wu, W., Chen, B., Al-Hilo, A., Benamara, M., Zhu, H., Watanabe, F., Cui, J., Chen, T.-P.: Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 7, 10672 (2016)
Zhang, X., Zhang, Y.-Y., Zhang, Y., Jiang, W.-J., Zhang, Q.-H., Yang, Y.-G., Gu, L., Hu, J.-S., Wan, L.-J.: Phase-controlled synthesis of 1T-MoSe2/NiSe heterostructure nanowire arrays via electronic injection for synergistically enhanced hydrogen evolution. Small Methods. 3, 1800317 (2018)
Voiry, D., Yamaguchi, H., Li, J., Silva, R., Alves, D.C.B., Fujita, T., Chen, M., Asefa, T., Shenoy, V.B., Eda, G., Chhowalla, M.: Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013)
Yin, Y., Zhang, Y., Gao, T., Yao, T., Zhang, X., Han, J., Wang, X., Zhang, Z., Xu, P., Zhang, P., Cao, X., Song, B., Jin, S.: Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Adv. Mater. 29, 1700311 (2017)
Zang, X., Chen, W., Zou, X., Hohman, J.N., Yang, L., Li, B., Wei, M., Zhu, C., Liang, J., Sanghadasa, M., Gu, J., Lin, L.: Self-assembly of large-area 2D polycrystalline transition metal carbides for hydrogen electrocatalysis. Adv. Mater. 30, 1805188 (2018)
Zhou, M., Zhang, Z., Huang, K., Shi, Z., Xie, R., Yang, W.: Colloidal preparation and electrocatalytic hydrogen production of MoS2 and WS2 nanosheets with controllable lateral sizes and layer numbers. Nanoscale. 8, 15262–15272 (2016)
Guo, Y., Xu, K., Wu, C., Zhao, J., Xie, Y.: Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. Chem. Soc. Rev. 44, 637–646 (2015)
Deng, D., Novoselov, K.S., Fu, Q., Zheng, N., Tian, Z., Bao, X.: Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotech. 11, 218–230 (2016)
Wang, T., Liu, L., Zhu, Z., Papakonstantinou, P., Hu, J., Liu, H., Li, M.: Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode. Energy Environ. Sci. 6, 625–633 (2013)
Yu, Y., Huang, S.-Y., Li, Y., Steinmann, S.N., Yang, W., Cao, L.: Layer-Dependent Electrocatalysis of MoS2 for Hydrogen Evolution. Nano Lett. 14, 553–558 (2014)
Hong Ng, V.M., Huang, H., Zhou, K., Lee, P.S., Que, W., Xu, J.Z., Kong, L.B.: Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J. Mater. Chem. A. 5, 3039–3068 (2017)
Anasori, B., Lukatskaya, M.R., Gogotsi, Y.: 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017)