Stratégies de réduction de l’utilisation des antibiotiques à visée curative en réanimation (adulte et pédiatrique)
Tóm tắt
Từ khóa
Tài liệu tham khảo
Cars O, Hogberg LD, Murray M, et al (2008) Meeting the challenge of antibiotic resistance. BMJ (Clinical research ed) 337:a1438. doi: 10.1136/bmj.a1438
So A, Furlong M, Heddini A (2010) Globalisation and antibiotic resistance. BMJ (Clinical research ed) 341:c5116. doi: 10.1136/bmj.c5116
So AD, Gupta N, Cars O (2010) Tackling antibiotic resistance. BMJ (Clinical research ed) 340:c2071. doi: 10.1136/bmj.c2071
Turnidge J, Christiansen K (2005) Antibiotic use and resistance: proving the obvious. Lancet 365:548–9. doi: 10.1016/s0140-6736(05)17920-3
Wester CW, Durairaj L, Evans AT, et al (2002) Antibiotic resistance: a survey of physician perceptions. Arch Intern Med 162:2210–6
Bassetti M, Merelli M, Temperoni C, Astilean A (2013) New antibiotics for bad bugs: where are we? Ann Clin Microbiol Antimicrob 12:22. doi: 10.1186/1476-0711-12-22
Boucher HW, Talbot GH, Bradley JS, et al (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48:1–12. doi: 10.1086/595011
Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40. doi: 10.1038/nrd2201
Spellberg B, Guidos R, Gilbert D, et al (2008) The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46:155–64. doi: 10.1086/524891
CDC (2013) Antibiotic resistance threats in the United States. Centers for Diseases Control and Prevention, USA
ECDC (2012) Summary of the latest data on antibiotic resistance in the European Union. 2012 edn. European Centre for Disease Prevention and Control, Stockholm
Ministère des Affaires sociales et de la Santé, ministère de l’Agriculture de l’Agroalimentaire et de la Forêt, Organisation mondiale de la santé animale (OIE) (2013) In: www.sante.gouv.fr (ed) Le concept « Une seule santé » appliqué à l’antibiorésistance: colloque du 14 novembre 2013, Paris
WHO (2014) Antimicrobial Resistance Global Report on surveillance. World Health Organization, Geneva, Switzerland
Fridkin SK (2001) Increasing prevalence of antimicrobial resistance in intensive care units. Crit Care Med 29:N64–N68
Gandhi TN, DePestel DD, Collins CD, et al (2010) Managing antimicrobial resistance in intensive care units. Crit Care Med 38:S315–S23. doi: 10.1097/CCM.0b013e3181e6a2a4
Kollef MH, Fraser VJ (2001) Antibiotic resistance in the intensive care unit. Ann Intern Med 134:298–314
Polin RA, Denson S, Brady MT (2012) Strategies for prevention of health care-associated infections in the NICU. Pediatrics 129:e1085–e1093. doi: 10.1542/peds.2012-0145
Salgado CD, O’Grady N, Farr BM (2005) Prevention and control of antimicrobial-resistant infections in intensive care patients. Crit Care Med 33:2373–82
Atkins D, Best D, Briss PA, et al (2004) Grading quality of evidence and strength of recommendations. BMJ (Clinical research ed) 328:1490. doi: 10.1136/bmj.328.7454.1490
Guyatt GH, Oxman AD, Vist GE, et al (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ (Clinical research ed) 336:924–6. doi: 10.1136/bmj.39489.470347.AD
Fitch K, Bernstein S, Aguilar M, Burnand B (2001) The RAND/UCLA Appropriateness Method User’s Manual. RAND. RAND, Santa Monica, CA
Baquero F, Negri MC, Morosini MI, Blazquez J (1998) Antibiotic-selective environments. Clin Infect Dis 27:S5–S11
Neuhauser MM, Weinstein RA, Rydman R, et al (2003) Antibiotic resistance among Gram-negative bacilli in US intensive care units: implications for fluoroquinolone use. JAMA 289:885–8
DiazGranados CA (2012) Prospective audit for antimicrobial stewardship in intensive care: impact on resistance and clinical outcomes. Am J Infect Control 40:526–9. doi: 10.1016/j.ajic.2011.07.011
Kim JW, Chung J, Choi SH, et al (2012) Early use of imipenem/cilastatin and vancomycin followed by de-escalation versus conventional antimicrobials without de-escalation for patients with hospital-acquired pneumonia in a medical ICU: a randomized clinical trial. Crit Care 16:R28. doi: 10.1186/cc11197
Kaki R, Elligsen M, Walker S, et al (2011) Impact of antimicrobial stewardship in critical care: a systematic review. J Antimicrob Chemother 66:1223–30. doi: 10.1093/jac/dkr137
Ben-Ami R, Schwaber MJ, Navon-Venezia S, et al (2006) Influx of extended-spectrum beta-lactamase-producing enterobacteriaceae into the hospital. Clin Infect Dis 42:925–34. doi: 10.1086/500936
Donskey CJ, Chowdhry TK, Hecker MT, et al (2000) Effect of antibiotic therapy on the density of vancomycin-resistant enterococci in the stool of colonized patients. N Engl J Med 343:1925–32. doi: 10.1056/nejm200012283432604
Savey A, Machut A (2013) Résultats 2012 (trans: Institut de veille sanitaire). Surveillance des infections nosocomiales en réanimation adulte. Réseau REA-Raisin, France
Dudeck MA, Weiner LM, Allen-Bridson K, et al (2013) National Healthcare Safety Network (NHSN) report, data summary for 2012, Device-associated module. Am J Infect Control 41:1148–66. doi: 10.1016/j.ajic.2013.09.002
Kuster SP, Ruef C, Ledergerber B, et al (2008) Quantitative antibiotic use in hospitals: comparison of measurements, literature review, and recommendations for a standard of reporting. Infection 36:549–59. doi: 10.1007/s15010-008-7462-z
EUCAST, CASFM (2012) European Manual of Clinical Microbiology. Vol 1st edition, Vivactis Plus
Garnacho-Montero J, Gutierrez-Pizarraya A, Escoresca-Ortega A, et al (2014) De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intensive Care Med 40:32–40. doi: 10.1007/s00134-013-3077-7
Mokart D, Slehofer G, Lambert J, et al (2014) De-escalation of antimicrobial treatment in neutropenic patients with severe sepsis: results from an observational study. Intensive Care Med 40:41–9. doi: 10.1007/s00134-013-3148-9
Fagon JY, Chastre J, Wolff M, et al (2000) Invasive and noninvasive strategies for management of suspected ventilator-associated pneumonia. A randomized trial. Ann Intern Med 132:621–30
Swanson JM, Wood GC, Croce MA, et al (2008) Utility of preliminary bronchoalveolar lavage results in suspected ventilator-associated pneumonia. J Trauma 65:1271–7. doi: 10.1097/TA.0b013e3181574d6a
Canadian Critical Care Trials Group (2006) A randomized trial of diagnostic techniques for ventilator-associated pneumonia. N Engl J Med 355:2619–30. doi: 10.1056/NEJMoa052904
Joly-Guillou ML, Eveillard M (2011) Avantages et limites de l’examen direct (ED) en bactériologie. Rev Fr Lab 2011:33–8. doi: 10.1016/S1773-035X(11)71052-8
Albert M, Friedrich JO, Adhikari NK, et al (2008) Utility of Gram stain in the clinical management of suspected ventilator-associated pneumonia. Secondary analysis of a multicenter randomized trial. J Crit Care 23:74–81. doi: 10.1016/j.jcrc.2008.01.004
O’Horo JC, Thompson D, Safdar N (2012) Is the Gram stain useful in the microbiologic diagnosis of VAP? A meta-analysis. Clin Infect Dis 55:551–61. doi: 10.1093/cid/cis512
Beuving J, van der Donk CF, Linssen CF, et al (2011) Evaluation of direct inoculation of the BD PHOENIX system from positive BACTEC blood cultures for both Gram-positive cocci and Gram-negative rods. BMC Microbiol 11:156. doi: 10.1186/1471-2180-11-156
Beuving J, Verbon A, Gronthoud FA, et al (2011) Antibiotic susceptibility testing of grown blood cultures by combining culture and real-time polymerase chain reaction is rapid and effective. PloS One 6:e27689. doi: 10.1371/journal.pone.0027689
Bruins M, Oord H, Bloembergen P, et al (2005) Lack of effect of shorter turnaround time of microbiological procedures on clinical outcomes: a randomised controlled trial among hospitalised patients in the Netherlands. Eur J Clin Microbiol Infect Dis 24:305–13. doi: 10.1007/s10096-005-1309-7
Gherardi G, Angeletti S, Panitti M, et al (2012) Comparative evaluation of the Vitek-2 Compact and Phoenix systems for rapid identification and antibiotic susceptibility testing directly from blood cultures of Gram-negative and Gram-positive isolates. Diagn Microbiol Infect Dis 72:20–31. doi: 10.1016/j.diagmicrobio.2011.09.015
Romero-Gomez MP, Gomez-Gil R, Pano-Pardo JR, Mingorance J (2012) Identification and susceptibility testing of microorganism by direct inoculation from positive blood culture bottles by combining MALDI-TOF and Vitek-2 Compact is rapid and effective. J Infect 65:513–20. doi: 10.1016/j.jinf.2012.08.013
Yonetani S, Okazaki M, Araki K, et al (2012) Direct inoculation method using BacT/ALERT 3D and BD Phoenix System allows rapid and accurate identification and susceptibility testing for both Gram-positive cocci and Gram-negative rods in aerobic blood cultures. Diagn Microbiol Infect Dis 73:129–34. doi: 10.1016/j.diagmicrobio.2012.03.004
Galar A, Yuste JR, Espinosa M, et al (2012) Clinical and economic impact of rapid reporting of bacterial identification and antimicrobial susceptibility results of the most frequently processed specimen types. Eur J Clin Microbiol Infect Dis 31:2445–52. doi: 10.1007/s10096-012-1588-8
Bizzini A, Greub G (2010) Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin Microbiol Infect 16:1614–9. doi: 10.1111/j.1469-0691.2010.03311.x
Buchan BW, Riebe KM, Ledeboer NA (2012) Comparison of the MALDI Biotyper system using Sepsityper specimen processing to routine microbiological methods for identification of bacteria from positive blood culture bottles. J Clin Microbiol 50:346–52. doi: 10.1128/jcm.05021-11
Clark AE, Kaleta EJ, Arora A, Wolk DM (2013) Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev 26:547–603. doi: 10.1128/cmr.00072-12
Dingle TC, Butler-Wu SM (2013) Maldi-tof mass spectrometry for microorganism identification. Clin Lab Med 33:589–609. doi: 10.1016/j.cll.2013.03.001
Kerremans JJ, Verboom P, Stijnen T, et al (2008) Rapid identification and antimicrobial susceptibility testing reduce antibiotic use and accelerate pathogen-directed antibiotic use. J Antimicrob Chemother 61:428–35. doi: 10.1093/jac/dkm497
Ferroni A, Suarez S, Beretti JL, et al (2010) Real-time identification of bacteria and Candida species in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 48:1542–8. doi: 10.1128/jcm.02485-09
Vlek AL, Bonten MJ, Boel CH (2012) Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry improves appropriateness of antibiotic treatment of bacteremia. PloS One 7:e32589. doi: 10.1371/journal.pone.0032589
Clerc O, Prod’hom G, Vogne C, et al (2013) Impact of matrix-assisted laser desorption ionization time-of-flight mass spectrometry on the clinical management of patients with Gram-negative bacteremia: a prospective observational study. Clin Infect Dis 56:1101–7. doi: 10.1093/cid/cis1204
Tan KE, Ellis BC, Lee R, et al (2012) Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J Clin Microbiol 50:3301–8. doi: 10.1128/jcm.01405-12
Perez KK, Olsen RJ, Musick WL, et al (2013) Integrating rapid pathogen identification and antimicrobial stewardship significantly decreases hospital costs. Arch Pathol Lab Med 137:1247–54. doi: 10.5858/arpa.2012-0651-OA
Jehl F (2014) CASFM: Recommandations 2014. SFM edn. Société française de microbiologie, Paris
Piso RJ, Iven-Koller D, Koller MT, Bassetti S (2012) The routine use of urinary pneumococcal antigen test in hospitalised patients with community acquired pneumonia has limited impact for adjustment of antibiotic treatment. Swiss Med Wkly 142:w13679. doi: 10.4414/smw.2012.13679
Roson B, Fernandez-Sabe N, Carratala J, et al (2004) Contribution of a urinary antigen assay (Binax NOW) to the early diagnosis of pneumococcal pneumonia. Clin Infect Dis 38:222–26. doi: 10.1086/380639
Smith MD, Derrington P, Evans R, et al (2003) Rapid diagnosis of bacteremic pneumococcal infections in adults by using the Binax NOW Streptococcus pneumoniae urinary antigen test: a prospective, controlled clinical evaluation. J Clin Microbiol 41:2810–3
Lasocki S, Scanvic A, Le Turdu F, et al (2006) Evaluation of the Binax NOW Streptococcus pneumoniae urinary antigen assay in intensive care patients hospitalized for pneumonia. Intensive Care Med 32:1766–72. doi: 10.1007/s00134-006-0329-9
Charkaluk ML, Kalach N, Mvogo H, et al (2006) Assessment of a rapid urinary antigen detection by an immunochromatographic test for diagnosis of pneumococcal infection in children. Diagn Microbiol Infect Dis 55:89–94. doi: 10.1016/j.diagmicrobio.2005.10.013
Navarro D, Garcia-Maset L, Gimeno C, et al (2004) Performance of the Binax NOW Streptococcus pneumoniae urinary antigen assay for diagnosis of pneumonia in children with underlying pulmonary diseases in the absence of acute pneumococcal infection. J Clin Microbiol 42:4853–5. doi: 10.1128/jcm.42.10.4853-4855.2004
Shimada T, Noguchi Y, Jackson JL, et al (2009) Systematic review and metaanalysis: urinary antigen tests for Legionellosis. Chest 136:1576–85. doi: 10.1378/chest.08-2602
Falguera M, Ruiz-Gonzalez A, Schoenenberger JA, et al (2010) Prospective, randomised study to compare empirical treatment versus targeted treatment on the basis of the urine antigen results in hospitalised patients with community-acquired pneumonia. Thorax 65:101–6. doi: 10.1136/thx.2009.118588
Matta M, Kerneis S, Day N, et al (2010) Do clinicians consider the results of the BinaxNOW Streptococcus pneumoniae urinary antigen test when adapting antibiotic regimens for pneumonia patients? Clin Microbiol Infect 16:1389–93. doi: 10.1111/j.1469-0691.2009.03088.x
Biendo M, Mammeri H, Pluquet E, et al (2013) Value of Xpert MRSA/SA blood culture assay on the Gene Xpert(R) Dx System for rapid detection of Staphylococcus aureus and coagulase-negative staphylococci in patients with staphylococcal bacteremia. Diagn Microbiol Infect Dis 75:139–43. doi: 10.1016/j.diagmicrobio.2012.11.005
Frye AM, Baker CA, Rustvold DL, et al (2012) Clinical impact of a real-time PCR assay for rapid identification of staphylococcal bacteremia. J Clin Microbiol 50:127–33. doi: 10.1128/jcm.06169-11
Grobner S, Dion M, Plante M, Kempf VA (2009) Evaluation of the BD GeneOhm StaphSR assay for detection of methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolates from spiked positive blood culture bottles. J Clin Microbiol 47:1689–94. doi: 10.1128/jcm.02179-08
Wolk DM, Blyn LB, Hall TA, et al (2009) Pathogen profiling: rapid molecular characterization of Staphylococcus aureus by PCR/electrospray ionization-mass spectrometry and correlation with phenotype. J Clin Microbiol 47:3129–37. doi: 10.1128/jcm.00709-09
Bauer KA, West JE, Balada-Llasat JM, et al (2010) An antimicrobial stewardship program’s impact with rapid polymerase chain reaction methicillin-resistant Staphylococcus aureus/S. aureus blood culture test in patients with S. aureus bacteremia. Clin Infect Dis 51:1074–80. doi: 10.1086/656623
Davies J, Gordon CL, Tong SY, et al (2012) Impact of results of a rapid Staphylococcus aureus diagnostic test on prescribing of antibiotics for patients with clustered Gram-positive cocci in blood cultures. J Clin Microbiol 50:2056–8. doi: 10.1128/jcm.06773-11
Ruimy R, Dos-Santos M, Raskine L, et al (2008) Accuracy and potential usefulness of triplex real-time PCR for improving antibiotic treatment of patients with blood cultures showing clustered Gram-positive cocci on direct smears. J Clin Microbiol 46:2045–51. doi: 10.1128/jcm.02250-07
Nonhoff C, Roisin S, Hallin M, Denis O (2012) Evaluation of Clearview Exact PBP2a, a new immunochromatographic assay, for detection of low-level methicillin-resistant Staphylococcus aureus (LL-MRSA). J Clin Microbiol 50:3359–60. doi: 10.1128/jcm.01829-12
Romero-Gomez MP, Quiles-Melero I, Navarro C, et al (2012) Evaluation of the BinaxNOW PBP2a assay for the direct detection of methicillin resistance in Staphylococcus aureus from positive blood culture bottles. Diagn Microbiol Infect Dis 72:282–4. doi: 10.1016/j.diagmicrobio.2011.11.012
Depuydt P, Benoit D, Vogelaers D, et al (2006) Outcome in bacteremia associated with nosocomial pneumonia and the impact of pathogen prediction by tracheal surveillance cultures. Intensive Care Med 32:1773–81. doi: 10.1007/s00134-006-0354-8
Depuydt P, Benoit D, Vogelaers D, et al (2008) Systematic surveillance cultures as a tool to predict involvement of multidrug antibiotic resistant bacteria in ventilator-associated pneumonia. Intensive Care Med 34:675–82. doi: 10.1007/s00134-007-0953-z
Jung B, Sebbane M, Chanques G, et al (2009) Previous endotracheal aspirate allows guiding the initial treatment of ventilator-associated pneumonia. Intensive Care Med 35:101–7. doi: 10.1007/s00134-008-1248-8
Michel F, Franceschini B, Berger P, et al (2005) Early antibiotic treatment for BAL-confirmed ventilator-associated pneumonia: a role for routine endotracheal aspirate cultures. Chest 127:589–97. doi: 10.1378/chest.127.2.589
Joseph NM, Sistla S, Dutta TK, et al (2010) Ventilator-associated pneumonia: role of colonizers and value of routine endotracheal aspirate cultures. Int J Infect Dis 14:e723–e9. doi: 10.1016/j.ijid.2010.02.2248
Hayon J, Figliolini C, Combes A, et al (2002) Role of serial routine microbiologic culture results in the initial management of ventilator-associated pneumonia. Am J Respir Crit Care Med 165:41–6. doi: 10.1164/ajrccm.165.1.2105077
Blot S, Depuydt P, Vogelaers D, et al (2005) Colonization status and appropriate antibiotic therapy for nosocomial bacteremia caused by antibiotic-resistant Gram-negative bacteria in an intensive care unit. Infect Control Hosp Epidemiol 26:575–9. doi: 10.1086/502575
Gauzit R, Gutmann L, Brun-Buisson C, et al (2010) Recommandations de bon usage des carbapénèmes. Antibiotiques 12:183–9. doi: 10.1016/j.antib.2010.09.002
Andes D, Craig WA (2005) Treatment of infections with ESBL-producing organisms: pharmacokinetic and pharmacodynamic considerations. Clin Microbiol Infect 11:10–17. doi: 10.1111/j.1469-0691.2005.01265.x
Nguyen HM, Shier KL, Graber CJ (2014) Determining a clinical framework for use of cefepime and beta-lactam/beta-lactamase inhibitors in the treatment of infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother 69:871–80. doi: 10.1093/jac/dkt450
Aubert G, Carricajo A, Vautrin AC, et al (2005) Impact of restricting fluoroquinolone prescription on bacterial resistance in an intensive care unit. J Hosp Infect 59:83–9. doi: 10.1016/j.jhin.2004.07.016
Dalhoff A (2012) Global fluoroquinolone resistance epidemiology and implictions for clinical use. Interdisciplinary perspectives on infectious diseases 2012:976273. doi: 10.1155/2012/976273
Garnica M, Nouer SA, Pellegrino FL, et al (2013) Ciprofloxacin prophylaxis in high risk neutropenic patients: effects on outcomes, antimicrobial therapy and resistance. BMC Infect Dis 13:356. doi: 10.1186/1471-2334-13-356
Nseir S, Di Pompeo C, Soubrier S, et al (2005) First-generation fluoroquinolone use and subsequent emergence of multiple drug-resistant bacteria in the intensive care unit. Crit Care Med 33:283–9
Troughton JA, Millar G, Smyth ET, et al (2011) Ciprofloxacin use and susceptibility of Gram-negative organisms to quinolone and non-quinolone antibiotics. J Antimicrob Chemother 66:2152–8. doi: 10.1093/jac/dkr264
Charbonneau P, Parienti JJ, Thibon P, et al (2006) Fluoroquinolone use and methicillin-resistant Staphylococcus aureus isolation rates in hospitalized patients: a quasi experimental study. Clin Infect Dis 42:778–84. doi: 10.1086/500319
Goorhuis A, Bakker D, Corver J, et al (2008) Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis 47:1162–70. doi: 10.1086/592257
Drieux L, Brossier F, Duquesnoy O, et al (2009) Increase in hospital-acquired bloodstream infections caused by extended spectrum beta-lactamase-producing Escherichia coli in a large French teaching hospital. Eur J Clin Microbiol Infect Dis 28:491–8. doi: 10.1007/s10096-008-0656-6
Ortega M, Marco F, Soriano A, et al (2009) Analysis of 4758 Escherichia coli bacteraemia episodes: predictive factors for isolation of an antibiotic-resistant strain and their impact on the outcome. J Antimicrob Chemother 63:568–74. doi: 10.1093/jac/dkn514
EMA (2011) Lévofloxacine — Résumés des caractéristiques du produit. European Medicines Agency, London, UK
EMA (2013) Ciprofloxacine — Résumés des caractéristiques du produit. European Medicines Agency, London, UK
EMA (2013) Moxifloxacine — Résumés des caractéristiques du produit. European Medicines Agency, London, UK
HAS (2010) Lévofloxacine — Avis de la Commission de Transparence (trans: Direction de l’évaluation médicale éedsp). Haute Autorité de santé, Saint-Denis, France
HAS (2011) Ciprofloxacine — Avis de la Commission de transparence (trans: Direction de l’évaluation médicale éedsp). Haute Autorité de santé, Saint-Denis, France
HAS (2012) Moxifloxacine — Avis de la Commission de transparence (trans: Direction de l’évaluation médicale éedsp). Haute Autorité de santé, Saint-Denis, France
SF2H (2010) Recommandations — Surveiller et prévenir les infections liées aux soins. Hygiènes XVII:7
Naimi TS, LeDell KH, Como-Sabetti K, et al (2003) Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. JAMA 290:2976–84. doi: 10.1001/jama.290.22.2976
Stralin K, Soderquist B (2006) Staphylococcus aureus in community-acquired pneumonia. Chest 130:623. doi: 10.1378/chest.130.2.623-a
Morens DM, Taubenberger JK, Fauci AS (2008) Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J Infect Dis 198:962–70. doi: 10.1086/591708
Woodhead M, Blasi F, Ewig S, et al (2011) Guidelines for the management of adult lower respiratory tract infections. Full version. Clin Microbiol Infect 17:E1–E59. doi: 10.1111/j.1469-0691.2011.03672.x
Sicot N, Khanafer N, Meyssonnier V, et al (2013) Methicillin resistance is not a predictor of severity in community-acquired Staphylococcus aureus necrotizing pneumonia: results of a prospective observational study. Clin Microbiol Infect 19:E142–E8. doi: 10.1111/1469-0691.12022
Costelloe C, Metcalfe C, Lovering A, et al (2010) Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis. BMJ 340:c2096. doi: 10.1136/bmj.c2096
Berman SJ, Johnson EW, Nakatsu C, et al (2004) Burden of infection in patients with end-stage renal disease requiring long-term dialysis. Clin Infect Dis 39:1747–53. doi: 10.1086/424516
El Solh AA, Pietrantoni C, Bhat A, et al (2004) Indicators of potentially drug-resistant bacteria in severe nursing home-acquired pneumonia. Clin Infect Dis 39:474–80. doi: 10.1086/422317
Polverino E, Dambrava P, Cilloniz C, et al (2010) Nursing home-acquired pneumonia: a 10-year single-centre experience. Thorax 65:354–9. doi: 10.1136/thx.2009.124776
Scanvic A, Denic L, Gaillon S, et al (2001) Duration of colonization by methicillin-resistant Staphylococcus aureus after hospital discharge and risk factors for prolonged carriage. Clin Infect Dis 32:1393–8. doi: 10.1086/320151
Baron EJ, Miller JM, Weinstein MP, et al (2013) Executive summary: a guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2013 recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM) (a). Clin Infect Dis 57:485–8. doi: 10.1093/cid/cit441
Manian FA (2009) IDSA guidelines for the diagnosis and management of intravascular catheter-related bloodstream infection. Clin Infect Dis 49:1770–1; author reply 1771–2. doi: 10.1086/648113
Garcia-Vazquez E, Fernandez-Rufete A, Hernandez-Torres A, et al (2013) When is coagulase-negative Staphylococcus bacteraemia clinically significant? Scand J Infect Dis 45:664–71. doi: 10.3109/00365548.2013.797599
Casey AL, Worthington T, Lambert PA, Elliott TS (2007) Evaluation of routine microbiological techniques for establishing the diagnosis of catheter-related bloodstream infection caused by coagulase-negative staphylococci. J Med Microbiol 56:172–6. doi: 10.1099/jmm.0.46568-0
Beekmann SE, Diekema DJ, Doern GV (2005) Determining the clinical significance of coagulase-negative staphylococci isolated from blood cultures. Infect Control Hosp Epidemiol 26:559–66. doi: 10.1086/502584
Elzi L, Babouee B, Vogeli N, et al (2012) How to discriminate contamination from bloodstream infection due to coagulase-negative staphylococci: a prospective study with 654 patients. Clin Microbiol Infect 18:E355–E61. doi: 10.1111/j.1469-0691.2012.03964.x
Lambotte O, Timsit JF, Garrouste-Orgeas M, et al (2002) The significance of distal bronchial samples with commensals in ventilator-associated pneumonia: colonizer or pathogen? Chest 122:1389–99
LaPlante KL, Rybak MJ (2004) Impact of high-inoculum Staphylococcus aureus on the activities of nafcillin, vancomycin, linezolid, and daptomycin, alone and in combination with gentamicin, in an in vitro pharmacodynamic model. Antimicrob Agents Chemother 48:4665–72. doi: 10.1128/aac.48.12.4665-4672.2004
Fowler VG Jr, Boucher HW, Corey GR, et al (2006) Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med 355:653–65. doi: 10.1056/NEJMoa053783
Murray KP, Zhao JJ, Davis SL, et al (2013) Early use of daptomycin versus vancomycin for methicillin-resistant Staphylococcus aureus bacteremia with vancomycin minimum inhibitory concentration >1 mg/l: a matched cohort study. Clin Infect Dis 56:1562–9. doi: 10.1093/cid/cit112
Falcone M, Russo A, Venditti M, et al (2013) Considerations for higher doses of daptomycin in critically ill patients with methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis 57:1568–76. doi: 10.1093/cid/cit582
Wunderink RG, Niederman MS, Kollef MH, et al (2012) Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a randomized, controlled study. Clin Infect Dis 54:621–9. doi: 10.1093/cid/cir895
Wunderink RG, Rello J, Cammarata SK, et al (2003) Linezolid vs vancomycin: analysis of two double-blind studies of patients with methicillin-resistant Staphylococcus aureus nosocomial pneumonia. Chest 124:1789–97
Roberts JA, Taccone FS, Udy AA, et al (2011) Vancomycin dosing in critically ill patients: robust methods for improved continuous-infusion regimens. Antimicrob Agents Chemother 55:2704–9. doi: 10.1128/aac.01708-10
Zelenitsky S, Rubinstein E, Ariano R, et al (2013) Vancomycin pharmacodynamics and survival in patients with methicillin-resistant Staphylococcus aureus-associated septic shock. Int J Antimicrob Agents 41:255–60. doi: 10.1016/j.ijantimicag.2012.10.015
Patel N, Pai MP, Rodvold KA, et al (2011) Vancomycin: we can’t get there from here. Clin Infect Dis 52:969–74. doi: 10.1093/cid/cir078
van Hal SJ, Jones M, Gosbell IB, Paterson DL (2011) Vancomycin heteroresistance is associated with reduced mortality in ST239 methicillin-resistant Staphylococcus aureus blood stream infections. PloS One 6:e21217. doi: 10.1371/journal.pone.0021217
Hageman JC, Liedtke LA, Sunenshine RH, et al (2006) Management of persistent bacteremia caused by methicillin-resistant Staphylococcus aureus: a survey of infectious diseases consultants. Clin Infect Dis 43:e42–e5. doi: 10.1086/506568
Deresinski S (2009) Vancomycin in combination with other antibiotics for the treatment of serious methicillin-resistant Staphylococcus aureus infections. Clin Infect Dis 49:1072–9. doi: 10.1086/605572
Kumar A, Roberts D, Wood KE, et al (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34:1589–96. doi: 10.1097/01.ccm.0000217961.75225.e9
Gaieski DF, Mikkelsen ME, Band RA, et al (2010) Impact of time to antibiotics on survival in patients with severe sepsis or septic shock in whom early goal-directed therapy was initiated in the emergency department. Crit Care Med 38:1045–53. doi: 10.1097/CCM.0b013e3181cc4824
Waterer GW, Kessler LA, Wunderink RG (2006) Delayed administration of antibiotics and atypical presentation in community-acquired pneumonia. Chest 130:11–15. doi: 10.1378/chest.130.1.11
Wilson PA, Ferguson J (2005) Severe community-acquired pneumonia: an Australian perspective. Intern Med J 35:699–705. doi: 10.1111/j.1445-5994.2005.00962.x
Yu KT, Wyer PC (2008) Evidence-based emergency medicine/critically appraised topic. Evidence behind the 4-hour rule for initiation of antibiotic therapy in community-acquired pneumonia. Ann Emerg Med 51:651–62, 662:e1–e2. doi: 10.1016/j.annemergmed.2007.10.022
Silber SH, Garrett C, Singh R, et al (2003) Early administration of antibiotics does not shorten time to clinical stability in patients with moderate-to-severe community-acquired pneumonia. Chest 124:1798–804
Pines JM, Isserman JA, Hinfey PB (2009) The measurement of time to first antibiotic dose for pneumonia in the emergency department: a white paper and position statement prepared for the American Academy of Emergency Medicine. J Emerg Med 37:335–40. doi: 10.1016/j.jemermed.2009.06.127
Cheng AC, Buising KL (2009) Delayed administration of antibiotics and mortality in patients with community-acquired pneumonia. Ann Emerg Med 53:618–24. doi: 10.1016/j.annemergmed.2008.07.017
Simonetti A, Viasus D, Garcia-Vidal C, et al (2012) Timing of antibiotic administration and outcomes of hospitalized patients with community-acquired and healthcare-associated pneumonia. Clin Microbiol Infect 18:1149–55. doi: 10.1111/j.1469-0691.2011.03709.x
Bordon J, Aliberti S, Duvvuri P, et al (2013) Early administration of the first antimicrobials should be considered a marker of optimal care of patients with community-acquired pneumonia rather than a predictor of outcomes. Int J Infect Dis 17:e293–e8. doi: 10.1016/j.ijid.2012.09.021
Sucov A, Valente J, Reinert SE (2013) Time to first antibiotics for pneumonia is not associated with in-hospital mortality. J Emerg Med 45:1–7. doi: 10.1016/j.jemermed.2012.11.018
Aronin SI, Peduzzi P, Quagliarello VJ (1998) Community-acquired bacterial meningitis: risk stratification for adverse clinical outcome and effect of antibiotic timing. Ann Intern Med 129:862–9
Auburtin M, Wolff M, Charpentier J, et al (2006) Detrimental role of delayed antibiotic administration and penicillin-nonsusceptible strains in adult intensive care unit patients with pneumococcal meningitis: the PNEUMOREA prospective multicenter study. Crit Care Med 34:2758–65. doi: 10.1097/01.ccm.0000239434.26669.65
Koster-Rasmussen R, Korshin A, Meyer CN (2008) Antibiotic treatment delay and outcome in acute bacterial meningitis. J Infect 57:449–54. doi: 10.1016/j.jinf.2008.09.033
SPILF (2009) 17th Consensus conference. Consensus conference on bacterial meningitis. Short text. Med Mal Infect 39:175–86
Davies JM, Lewis MP, Wimperis J, et al (2011) Review of guidelines for the prevention and treatment of infection in patients with an absent or dysfunctional spleen: prepared on behalf of the British Committee for Standards in Haematology by a working party of the Haemato-Oncology task force. Br J Haematol 155:308–17. doi: 10.1111/j.1365-2141.2011.08843.x
Freifeld AG, Bow EJ, Sepkowitz KA, et al (2011) Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin Infect Dis 52:e56–e93. doi: 10.1093/cid/cir073
Roberts JA (2011) Using PK/PD to optimize antibiotic dosing for critically ill patients. Curr Pharm Biotechnol 12:2070–9
Roberts JA, Lipman J (2006) Antibacterial dosing in intensive care: pharmacokinetics, degree of disease and pharmacodynamics of sepsis. Clin Pharmacokinet 45:755–73. doi: 10.2165/00003088-200645080-00001
Roberts JA, Lipman J (2009) Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med 37:840–51; quiz 859. doi: 10.1097/CCM.0b013e3181961bff
Wurtz R, Itokazu G, Rodvold K (1997) Antimicrobial dosing in obese patients. Clin Infect Dis 25:112–8
Chatellier D, Jourdain M, Mangalaboyi J, et al (2002) Cefepime-induced neurotoxicity: an underestimated complication of antibiotherapy in patients with acute renal failure. Intensive Care Med 28:214–7. doi: 10.1007/s00134-001-1170-9
Goncalves-Pereira J, Povoa P (2011) Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of beta-lactams. Crit Care 15:R206. doi: 10.1186/cc10441
McKenzie C (2011) Antibiotic dosing in critical illness. J Antimicrob Chemother 66:ii25–ii31. doi: 10.1093/jac/dkq516
Udy AA, Roberts JA, Boots RJ, et al (2010) Augmented renal clearance: implications for antibacterial dosing in the critically ill. Clin Pharmacokinet 49:1–16. doi: 10.2165/11318140-000000000-00000
Chirico G, Barbieri F, Chirico C (2009) Antibiotics for the newborn. J Matern Fetal Neonatal Med 22:46–9. doi: 10.1080/14767050903192192
Tripathi N, Cotten CM, Smith PB (2012) Antibiotic use and misuse in the neonatal intensive care unit. Clin Perinatol 39:61–8. doi: 10.1016/j.clp.2011.12.003
Ambrose PG, Bhavnani SM, Rubino CM, et al (2007) Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis 44:79–86. doi: 10.1086/510079
Roberts JA, Kruger P, Paterson DL, Lipman J (2008) Antibiotic resistance — what’s dosing got to do with it? Crit Care Med 36:2433–40. doi: 10.1097/CCM.0b013e318180fe62
Roberts JA, Norris R, Paterson DL, Martin JH (2012) Therapeutic drug monitoring of antimicrobials. Br J Clin Pharmacol 73:27–36. doi: 10.1111/j.1365-2125.2011.04080.x
Daikos GL, Jackson GG, Lolans VT, Livermore DM (1990) Adaptive resistance to aminoglycoside antibiotics from first-exposure down-regulation. J Infect Dis 162:414–20
Drusano GL, Louie A (2011) Optimization of aminoglycoside therapy. Antimicrob Agents Chemother 55:2528–31. doi: 10.1128/aac.01314-10
Kashuba AD, Nafziger AN, Drusano GL, Bertino JS Jr (1999) Optimizing aminoglycoside therapy for nosocomial pneumonia caused by Gram-negative bacteria. Antimicrob Agents Chemother 43:623–9
Moore RD, Lietman PS, Smith CR (1987) Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis 155:93–9
Rea RS, Capitano B, Bies R, et al (2008) Suboptimal aminoglycoside dosing in critically ill patients. Ther Drug Monit 30:674–81. doi: 10.1097/FTD.0b013e31818b6b2f
van Lent-Evers NA, Mathot RA, Geus WP, et al (1999) Impact of goal-oriented and model-based clinical pharmacokinetic dosing of aminoglycosides on clinical outcome: a cost-effectiveness analysis. Ther Drug Monit 21:63–73
Afssaps, SPILF, GPIP (2011) Mise au point sur le bon usage des aminosides administrés par voie injectable: gentamicine, tobramycine, nétilmicine, amikacine
Jeffres MN, Isakow W, Doherty JA, et al (2006) Predictors of mortality for methicillin-resistant Staphylococcus aureus health-care-associated pneumonia: specific evaluation of vancomycin pharmacokinetic indices. Chest 130:947–55. doi: 10.1378/chest.130.4.947
Rybak MJ, Lomaestro BM, Rotschafer JC, et al (2009) Vancomycin therapeutic guidelines: a summary of consensus recommendations from the infectious diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clin Infect Dis 49:325–7. doi: 10.1086/600877
Mouton JW, den Hollander JG (1994) Killing of Pseudomonas aeruginosa during continuous and intermittent infusion of ceftazidime in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 38:931–6
Blondiaux N, Wallet F, Favory R, et al (2010) Daily serum piperacillin monitoring is advisable in critically ill patients. Int J Antimicrob Agents 35:500–3. doi: 10.1016/j.ijantimicag.2010.01.018
Hites M, Taccone FS, Wolff F, et al (2013) Case-control study of drug monitoring of beta-lactams in obese critically ill patients. Antimicrob Agents Chemother 57:708–15. doi: 10.1128/aac.01083-12
Sime FB, Roberts MS, Peake SL, et al (2012) Does beta-lactam pharmacokinetic variability in critically ill patients justify therapeutic drug monitoring? A systematic review. Ann Intensive Care 2:35. doi: 10.1186/2110-5820-2-35
Taccone FS, Laterre PF, Dugernier T, et al (2010) Insufficient beta-lactam concentrations in the early phase of severe sepsis and septic shock. Crit Care 14:R126. doi: 10.1186/cc9091
Fantin B, Farinotti R, Thabaut A, Carbon C (1994) Conditions for the emergence of resistance to cefpirome and ceftazidime in experimental endocarditis due to Pseudomonas aeruginosa. J Antimicrob Chemother 33:563–9
Roberts JA, Boots R, Rickard CM, et al (2007) Is continuous infusion ceftriaxone better than once-a-day dosing in intensive care? A randomized controlled pilot study. J Antimicrob Chemother 59:285–91. doi: 10.1093/jac/dkl478
Thomas JK, Forrest A, Bhavnani SM, et al (1998) Pharmacodynamic evaluation of factors associated with the development of bacterial resistance in acutely ill patients during therapy. Antimicrob Agents Chemother 42:521–7
Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26:1–10; quiz 11–12
Vogelman B, Gudmundsson S, Leggett J, et al (1988) Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. J Infect Dis 158:831–47
Manduru M, Mihm LB, White RL, et al (1997) In vitro pharmacodynamics of ceftazidime against Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother 41:2053–6
Mohr JF, Wanger A, Rex JH (2004) Pharmacokinetic/pharmacodynamic modeling can help guide targeted antimicrobial therapy for nosocomial Gram-negative infections in critically ill patients. Diagn Microbiol Infect Dis 48:125–30. doi: 10.1016/j.diagmicrobio.2003.09.010
Li C, Du X, Kuti JL, Nicolau DP (2007) Clinical pharmacodynamics of meropenem in patients with lower respiratory tract infections. Antimicrob Agents Chemother 51:1725–30. doi: 10.1128/aac.00294-06
Scaglione F, Esposito S, Leone S, et al (2009) Feedback dose alteration significantly affects probability of pathogen eradication in nosocomial pneumonia. Eur Respir J 34:394–400. doi: 10.1183/09031936.00149508
Drusano GL (2003) Prevention of resistance: a goal for dose selection for antimicrobial agents. Clin Infect Dis 36:S42–S50. doi: 10.1086/344653
Roberts JA, Hope WW, Lipman J (2010) Therapeutic drug monitoring of beta-lactams for critically ill patients: unwarranted or essential? Int J Antimicrob Agents 35:419–20. doi: 10.1016/j.ijantimicag.2010.01.022
Yost RJ, Cappelletty DM (2011) The Retrospective Cohort of Extended-Infusion Piperacillin-Tazobactam (RECEIPT) study: a multicenter study. Pharmacotherapy 31:767–75. doi: 10.1592/phco.31.8.767
Lodise TP Jr, Lomaestro B, Drusano GL (2007) Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis 44:357–63. doi: 10.1086/510590
Bauer KA, West JE, O’Brien JM, Goff DA (2013) Extended-infusion cefepime reduces mortality in patients with Pseudomonas aeruginosa infections. Antimicrob Agents Chemother 57:2907–12. doi: 10.1128/aac.02365-12
Falagas ME, Tansarli GS, Ikawa K, Vardakas KZ (2013) Clinical outcomes with extended or continuous versus short-term intravenous infusion of carbapenems and piperacillin/tazobactam: a systematic review and meta-analysis. Clin Infect Dis 56:272–82. doi: 10.1093/cid/cis857
Roberts JA, Webb S, Paterson D, et al (2009) A systematic review on clinical benefits of continuous administration of beta-lactam antibiotics. Crit Care Med 37:2071–8. doi: 10.1097/CCM.0b013e3181a0054d
Shiu J, Wang E, Tejani AM, Wasdell M (2013) Continuous versus intermittent infusions of antibiotics for the treatment of severe acute infections. Cochrane Database Syst Rev 3:CD008481. doi: 10.1002/14651858.CD008481.pub2
Tamma PD, Putcha N, Suh YD, et al (2011) Does prolonged beta-lactam infusions improve clinical outcomes compared to intermittent infusions? A meta-analysis and systematic review of randomized, controlled trials. BMC Infect Dis 11:181. doi: 10.1186/1471-2334-11-181
Lorente L, Jimenez A, Martin MM, et al (2009) Clinical cure of ventilator-associated pneumonia treated with piperacillin/tazobactam administered by continuous or intermittent infusion. Int J Antimicrob Agents 33:464–8. doi: 10.1016/j.ijantimicag.2008.10.025
Lorente L, Lorenzo L, Martin MM, et al (2006) Meropenem by continuous versus intermittent infusion in ventilator-associated pneumonia due to Gram-negative bacilli. Ann Pharmacother 40:219–23. doi: 10.1345/aph.1G467
Lorente L, Jimenez A, Palmero S, et al (2007) Comparison of clinical cure rates in adults with ventilator-associated pneumonia treated with intravenous ceftazidime administered by continuous or intermittent infusion: a retrospective, nonrandomized, open-label, historical chart review. Clin Ther 29:2433–9. doi: 10.1016/j.clinthera.2007.11.003
Dulhunty JM, Roberts JA, Davis JS, et al (2013) Continuous infusion of beta-lactam antibiotics in severe sepsis: a multicenter double-blind, randomized controlled trial. Clin Infect Dis 56:236–44. doi: 10.1093/cid/cis856
Viaene E, Chanteux H, Servais H, et al (2002) Comparative stability studies of antipseudomonal beta-lactams for potential administration through portable elastomeric pumps (home therapy for cystic fibrosis patients) and motor-operated syringes (intensive care units). Antimicrob Agents Chemother 46:2327–32
Mouton JW, Horrevorts AM, Mulder PG, et al (1990) Pharmacokinetics of ceftazidime in serum and suction blister fluid during continuous and intermittent infusions in healthy volunteers. Antimicrob Agents Chemother 34:2307–11
Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ (2004) Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet 43:925–42
Kullar R, Davis SL, Levine DP, Rybak MJ (2011) Impact of vancomycin exposure on outcomes in patients with methicillin-resistant Staphylococcus aureus bacteremia: support for consensus guidelines suggested targets. Clin Infect Dis 52:975–81. doi: 10.1093/cid/cir124
Rybak M, Lomaestro B, Rotschafer JC, et al (2009) Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm 66:82–98. doi: 10.2146/ajhp080434
Boffi El Amari E, Vuagnat A, Stern R, et al (2004) High versus standard dose vancomycin for osteomyelitis. Scand J Infect Dis 36:712–7. doi: 10.1080/00365540410020901
Vuagnat A, Stern R, Lotthe A, et al (2004) High dose vancomycin for osteomyelitis: continuous vs. intermittent infusion. J Clin Pharm Ther 29:351–7. doi: 10.1111/j.1365-2710.2004.00572.x
Wysocki M, Delatour F, Faurisson F, et al (2001) Continuous versus intermittent infusion of vancomycin in severe Staphylococcal infections: prospective multicenter randomized study. Antimicrob Agents Chemother 45:2460–7
Wysocki M, Thomas F, Wolff MA, et al (1995) Comparison of continuous with discontinuous intravenous infusion of vancomycin in severe MRSA infections. J Antimicrob Chemother 35:352–4
Kitzis MD, Goldstein FW (2006) Monitoring of vancomycin serum levels for the treatment of staphylococcal infections. Clin Microbiol Infect 12:92–5. doi: 10.1111/j.1469-0691.2005.01306.x
Rello J, Sole-Violan J, Sa-Borges M, et al (2005) Pneumonia caused by oxacillin-resistant Staphylococcus aureus treated with glycopeptides. Crit Care Med 33:1983–7
Ferran AA, Kesteman AS, Toutain PL, Bousquet-Melou A (2009) Pharmacokinetic/pharmacodynamic analysis of the influence of inoculum size on the selection of resistance in Escherichia coli by a quinolone in a mouse thigh bacterial infection model. Antimicrob Agents Chemother 53:3384–90. doi: 10.1128/aac.01347-08
Olofsson SK, Marcusson LL, Komp-Lindgren P, et al (2006) Selection of ciprofloxacin resistance in Escherichia coli in an in vitro kinetic model: relation between drug exposure and mutant prevention concentration. J Antimicrob Chemother 57:1116–21. doi: 10.1093/jac/dkl135
Olofsson SK, Marcusson LL, Stromback A, et al (2007) Dose-related selection of fluoroquinolone-resistant Escherichia coli. J Antimicrob Chemother 60:795–801. doi: 10.1093/jac/dkm265
Singh R, Ledesma KR, Chang KT, et al (2009) Pharmacodynamics of moxifloxacin against a high inoculum of Escherichia coli in an in vitro infection model. J Antimicrob Chemother 64:556–62. doi: 10.1093/jac/dkp247
Stearne LE, Goessens WH, Mouton JW, Gyssens IC (2007) Effect of dosing and dosing frequency on the efficacy of ceftizoxime and the emergence of ceftizoxime resistance during the early development of murine abscesses caused by Bacteroides fragilis and Enterobacter cloacae mixed infection. Antimicrob Agents Chemother 51:3605–11. doi: 10.1128/aac.01486-06
Zhao X, Quinn B, Kerns R, Drlica K (2006) Bactericidal activity and target preference of a piperazinyl-cross-linked ciprofloxacin dimer with Staphylococcus aureus and Escherichia coli. J Antimicrob Chemother 58:1283–6. doi: 10.1093/jac/dkl388
Fantin B, Duval X, Massias L, et al (2009) Ciprofloxacin dosage and emergence of resistance in human commensal bacteria. J Infect Dis 200:390–8. doi: 10.1086/600122
Tam VH, Louie A, Deziel MR, et al (2007) The relationship between quinolone exposures and resistance amplification is characterized by an inverted U: a new paradigm for optimizing pharmacodynamics to counterselect resistance. Antimicrob Agents Chemother 51:744–7. doi: 10.1128/aac.00334-06
American Thoracic Society (2005) Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 171:388–416. doi: 10.1164/rccm.200405-644ST
File TM Jr (2010) Recommendations for treatment of hospital-acquired and ventilator-associated pneumonia: review of recent international guidelines. Clin Infect Dis 51:S42–S7. doi: 10.1086/653048
Dellinger RP, Levy MM, Rhodes A, et al (2013) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 39:165–228. doi: 10.1007/s00134-012-2769-8
Dellinger RP, Levy MM, Rhodes A, et al (2013) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41:580–637. doi: 10.1097/CCM.0b013e31827e83af
Averbuch D, Cordonnier C, Livermore DM, et al (2013) Targeted therapy against multi-resistant bacteria in leukemic and hematopoietic stem cell transplant recipients: guidelines of the 4th European Conference on Infections in Leukemia (ECIL-4, 2011). Haematologica 98:1836–47. doi: 10.3324/haematol.2013.091330
Gyssens IC, Kern WV, Livermore DM (2013) The role of antibiotic stewardship in limiting antibacterial resistance among hematology patients. Haematologica 98:1821–5. doi: 10.3324/haematol.2013.091769
Chastre J, Wolff M, Fagon JY, et al (2003) Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA 290:2588–98. doi: 10.1001/jama.290.19.2588
Singh N, Rogers P, Atwood CW, et al (2000) Short-course empiric antibiotic therapy for patients with pulmonary infiltrates in the intensive care unit. A proposed solution for indiscriminate antibiotic prescription. Am J Respir Crit Care Med 162:505–11. doi: 10.1164/ajrccm.162.2.9909095
Bouadma L, Luyt CE, Tubach F, et al (2010) Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet 375:463–74. doi: 10.1016/s0140-6736(09)61879-1
Fox BC, Imrey PB, Voights MB, Norwood S (2001) Infectious disease consultation and microbiologic surveillance for intensive care unit trauma patients: a pilot study. Clin Infect Dis 33:1981–9. doi: 10.1086/324083
Marra AR, de Almeida SM, Correa L, et al (2009) The effect of limiting antimicrobial therapy duration on antimicrobial resistance in the critical care setting. Am J Infect Control 37:204–9. doi: 10.1016/j.ajic.2008.06.008
Brahmi N, Blel Y, Kouraichi N, et al (2006) Impact of ceftazidime restriction on Gram-negative bacterial resistance in an intensive care unit. J Infect Chemother 12:190–4. doi: 10.1007/s10156-006-0452-0
Micek ST, Ward S, Fraser VJ, Kollef MH (2004) A randomized controlled trial of an antibiotic discontinuation policy for clinically suspected ventilator-associated pneumonia. Chest 125:1791–9
Nobre V, Harbarth S, Graf JD, et al (2008) Use of procalcitonin to shorten antibiotic treatment duration in septic patients: a randomized trial. Am J Respir Crit Care Med 177:498–505. doi: 10.1164/rccm.200708-1238OC
Schuetz P, Suter-Widmer I, Chaudri A, et al (2011) Prognostic value of procalcitonin in community-acquired pneumonia. Eur Respir J 37:384–92. doi: 10.1183/09031936.00035610
Schuetz P, Christ-Crain M, Thomann R, et al (2009) Effect of procalcitonin-based guidelines vs standard guidelines on antibiotic use in lower respiratory tract infections: the ProHOSP randomized controlled trial. JAMA 302:1059–66. doi: 10.1001/jama.2009.1297
Schuetz P, Briel M, Christ-Crain M, et al (2012) Procalcitonin to guide initiation and duration of antibiotic treatment in acute respiratory infections: an individual patient data meta-analysis. Clin Infect Dis 55:651–62. doi: 10.1093/cid/cis464
Christ-Crain M, Jaccard-Stolz D, Bingisser R, et al (2004) Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: cluster-randomised, single-blinded intervention trial. Lancet 363:600–7. doi: 10.1016/s0140-6736(04)15591-8
Christ-Crain M, Stolz D, Bingisser R, et al (2006) Procalcitonin guidance of antibiotic therapy in community-acquired pneumonia: a randomized trial. Am J Respir Crit Care Med 174:84–93. doi: 10.1164/rccm.200512-1922OC
Hochreiter M, Kohler T, Schweiger AM, et al (2009) Procalcitonin to guide duration of antibiotic therapy in intensive care patients: a randomized prospective controlled trial. Crit Care 13:R83. doi: 10.1186/cc7903
Kopterides P, Siempos II, Tsangaris I, et al (2010) Procalcitonin-guided algorithms of antibiotic therapy in the intensive care unit: a systematic review and meta-analysis of randomized controlled trials. Crit Care Med 38:2229–41. doi: 10.1097/CCM.0b013e3181f17bf9
Agarwal R, Schwartz DN (2011) Procalcitonin to guide duration of antimicrobial therapy in intensive care units: a systematic review. Clin Infect Dis 53:379–87. doi: 10.1093/cid/cir408
Stolz D, Smyrnios N, Eggimann P, et al (2009) Procalcitonin for reduced antibiotic exposure in ventilator-associated pneumonia: a randomised study. Eur Respir J 34:1364–75. doi: 10.1183/09031936.00053209
Stocker M, Fontana M, El Helou S, et al (2010) Use of procalcitonin-guided decision-making to shorten antibiotic therapy in suspected neonatal early-onset sepsis: prospective randomized intervention trial. Neonatology 97:165–74. doi: 10.1159/000241296
Heyland DK, Johnson AP, Reynolds SC, Muscedere J (2011) Procalcitonin for reduced antibiotic exposure in the critical care setting: a systematic review and an economic evaluation. Crit Care Med 39:1792–9. doi: 10.1097/CCM.0b013e31821201a5
Schuetz P, Muller B, Christ-Crain M, et al (2012) Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Cochrane Database Syst Rev 9:CD007498. doi: 10.1002/14651858.CD007498.pub2
Capellier G, Mockly H, Charpentier C, et al (2012) Early-onset ventilator-associated pneumonia in adults randomized clinical trial: comparison of 8 versus 15 days of antibiotic treatment. PloS One 7:e41290. doi: 10.1371/journal.pone.0041290
Fekih-Hassen M, Ayed S, Ben Sik Ali H, et al (2009) Duration of antibiotic therapy for ventilator-associated pneumonia: comparison of 7 and 10 days. A pilot study. Ann Fr Anesth Reanim 28:16–23. doi: 10.1016/j.annfar.2008.10.021
Kollef MH, Chastre J, Clavel M, et al (2012) A randomized trial of 7-day doripenem versus 10-day imipenem-cilastatin for ventilator-associated pneumonia. Crit Care 16:R218. doi: 10.1186/cc11862
Chowdhary G, Dutta S, Narang A (2006) Randomized controlled trial of 7-day vs 14-day antibiotics for neonatal sepsis. J Trop Pediatr 52:427–32. doi: 10.1093/tropej/fml054
Schuetz P, Briel M, Mueller B (2013) Clinical outcomes associated with procalcitonin algorithms to guide antibiotic therapy in respiratory tract infections. JAMA 309:717–8. doi: 10.1001/jama.2013.697
Carratala J, Garcia-Vidal C, Ortega L, et al (2012) Effect of a 3-step critical pathway to reduce duration of intravenous antibiotic therapy and length of stay in community-acquired pneumonia: a randomized controlled trial. Arch Intern Med 172:922–8. doi: 10.1001/archinternmed.2012.1690
Choudhury G, Mandal P, Singanayagam A, et al (2011) Seven-day antibiotic courses have similar efficacy to prolonged courses in severe community-acquired pneumonia: a propensity-adjusted analysis. Clin Microbiol Infect 17:1852–8. doi: 10.1111/j.1469-0691.2011.03542.x
Fine MJ, Stone RA, Lave JR, et al (2003) Implementation of an evidence-based guideline to reduce duration of intravenous antibiotic therapy and length of stay for patients hospitalized with community-acquired pneumonia: a randomized controlled trial. Am J Med 115:343–51
Li JZ, Winston LG, Moore DH, Bent S (2007) Efficacy of short-course antibiotic regimens for community-acquired pneumonia: a meta-analysis. Am J Med 120:783–90. doi: 10.1016/j.amjmed.2007.04.023
Solomkin JS, Mazuski JE, Bradley JS, et al (2010) Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin Infect Dis 50:133–64. doi: 10.1086/649554
Gupta K, Hooton TM, Naber KG, et al (2011) International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis 52:e103–e20. doi: 10.1093/cid/ciq257
van Nieuwkoop C, Wout JW, Assendelft WJ, et al (2009) Treatment duration of febrile urinary tract infection (FUTIRST trial): a randomized placebo-controlled multicenter trial comparing short (7 days) antibiotic treatment with conventional treatment (14 days). BMC Infect Dis 9:131. doi: 10.1186/1471-2334-9-131
Havey TC, Fowler RA, Daneman N (2011) Duration of antibiotic therapy for bacteremia: a systematic review and meta-analysis. Crit Care 15:R267. doi: 10.1186/cc10545
Chong YP, Moon SM, Bang KM, et al (2013) Treatment duration for uncomplicated Staphylococcus aureus bacteremia to prevent relapse: analysis of a prospective observational cohort study. Antimicrob Agents Chemother 57:1150–6. doi: 10.1128/aac.01021-12
Thwaites GE, Edgeworth JD, Gkrania-Klotsas E, et al (2011) Clinical management of Staphylococcus aureus bacteraemia. Lancet Infect Dis 11:208–22. doi: 10.1016/s1473-3099(10)70285-1
dos Santos EF, Lauria-Pires L, Pereira MG, et al (2007) Use of antibacterial agents in an intensive care unit in a hospital in Brazil. Braz J Infect Dis 11:355–9
Rimawi RH, Mazer MA, Siraj DS, et al (2013) Impact of regular collaboration between infectious diseases and critical care practitioners on antimicrobial utilization and patient outcome. Crit Care Med 41:2099–107. doi: 10.1097/CCM.0b013e31828e9863
Roger PM, Hyvernat H, Verleine-Pugliese S, et al (2000) Systematic infection consultation in the intensive care unit. Impact of short-term antibiotic use. Press Med 29:1640–4
Byl B, Clevenbergh P, Jacobs F, et al (1999) Impact of infectious diseases specialists and microbiological data on the appropriateness of antimicrobial therapy for bacteremia. Clin Infect Dis 29:60–6; discussion 67-68. doi: 10.1086/520182
Lesprit P, Landelle C, Brun-Buisson C (2013) Clinical impact of unsolicited post-prescription antibiotic review in surgical and medical wards: a randomized controlled trial. Clin Microbiol Infect 19:E91–E7. doi: 10.1111/1469-0691.12062
Ferrer M, Liapikou A, Valencia M, et al (2010) Validation of the American Thoracic Society-Infectious Diseases Society of America guidelines for hospital-acquired pneumonia in the intensive care unit. Clin Infect Dis 50:945–52. doi: 10.1086/651075
Ibrahim EH, Ward S, Sherman G, et al (2001) Experience with a clinical guideline for the treatment of ventilator-associated pneumonia. Crit Care Med 29:1109–15
Kett DH, Cano E, Quartin AA, et al (2011) Implementation of guidelines for management of possible multidrug-resistant pneumonia in intensive care: an observational, multicentre cohort study. Lancet Infect Dis 11:181–9. doi: 10.1016/s1473-3099(10)70314-5
Shorr AF, Bodi M, Rodriguez A, et al (2006) Impact of antibiotic guideline compliance on duration of mechanical ventilation in critically ill patients with community-acquired pneumonia. Chest 130:93–100. doi: 10.1378/chest.130.1.93
Soo Hoo GW, Wen YE, Nguyen TV, Goetz MB (2005) Impact of clinical guidelines in the management of severe hospital-acquired pneumonia. Chest 128:2778–87. doi: 10.1378/chest.128.4.2778