Strange products of projections

Eva Kopecká1, Adam Paszkiewicz2
1Department of Mathematics, University of Innsbruck, Innsbruck, Austria
2Faculty of Mathematics and Computer Science, Łódź University, Łódź, Poland

Tóm tắt

Từ khóa


Tài liệu tham khảo

I. Amemiya and T. Ando, Convergence of random products of contractions in Hilbert space, Acta Sci. Math. (Szeged) 26 (1965), 239–244.

I. Halperin, The product of projection operators, Acta Sci. Math. (Szeged) 23 (1962), 96–99.

H. S. Hundal, An alternating projection that does not converge in norm, Nonlinear Anal. 57 (2004), 35–61.

E. Kopecká, Spokes, mirrors and alternating projections, Nonlinear Anal. 68 (2008), 1759–1764.

E. Kopecká and V. Müller, A product of three projections, Studia Math. 223 (2014), 175–186.

E. Kopecká and S. Reich, A note on the von Neumann alternating projections algorithm, J. Nonlinear Convex Anal. 5 (2004), 379–386.

E. Matoušková and S. Reich, The Hundal example revisited, J. Nonlinear Convex Anal. 4 (2003), 411–427.

A. Paszkiewicz, The Amemiya–Ando conjecture falls, arXiv:1203.3354.

M. Práger, Über ein Konvergenzprinzip im Hilbertschen Raum, Czechoslovak Math. J. 10 (1960), 271–282, in Russian.

M. Sakai, Strong convergence of infinite products of orthogonal projections in Hilbert space, Appl. Anal. 59 (1995), 109–120.

J. von Neumann, On rings of operators. Reduction theory, Ann. of Math. 50 (1949), 401–485.