Strange attractors in higher dimensions

Marcelo Viana1,2
1Departamento de Matemática, Universidade do Porto, Porto, Portugal
2Instituto de Matemática Pura e Aplicada, IMPA, Rio de Janeiro, Brasil

Tóm tắt

Từ khóa


Tài liệu tham khảo

[BC1] M. Benedicks, L. Carleson,On iterations of 1 ?ax 2 on (?1,1), Ann. Math. 122 (1985), 1?25.

[BC2] M. Benedicks, L. Carleson,The dynamics of the Hénon map, Ann. Math. 133 (1991), 73?169.

[BY] M. Benedicks, L.-S. Young,SBR-measures for certain Hénon maps, preprint, 1992.

[CE] P. Collet, J. P. Eckmann,On the abundance of aperiodic behaviour for maps on the interval, Comm. Math. Phys. 73 (1980), 115?160.

[HP] M. Hirsch, C. Pugh,Stable manifolds and hyperbolic sets, Global Analysis, Proc. Symp. in Pure Math., vol. XIV, Amer. Math. Soc. (1970), 133?163.

[Ja] M. Jakobson,Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Comm. Math. Phys. 81 (1981), 39?88.

[MV] L. Mora, M. Viana,Abundance of strange attractors, to appear in Acta Math.

[Ne] S. Newhouse,The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math. I.H.E.S. 50 (1979), 101?151.

[PT] J. Palis, F. Takens,Hyperbolicity and Sensitive-Chaotic Dynamics at Homoclinic Bifurcations, Cambridge Univ. Press, 1992.

[Re] M. Rees,Positive measure sets of ergodic rational maps, Ann. Éc. Norm. Sup. 19 (1986), 383?407.

[TY] L. Tedeschini-Lalli, J.A. Yorke,How often do simple dynamical processes have infinitely many coexisting sinks?, Comm. Math. Phys. 106 (1986), 635?657.

[YA] J. A. Yorke, K. T. Alligood,Cascades of period doubling bifurcations: a prerequisite for horseshoes, Bull. A.M.S. 9 (1983), 319?322.