Strain-regulated electronic and optical properties of InSe/WS2 heterostructure from first-principle calculations
Tài liệu tham khảo
K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional Atomic Crystals, (n.d.).
Zhang, 2020, Systematically investigate mechanical and electrical properties of Bi2O2Se by Te atom substitution and compare it with homologue Bi2O2Te from first principles calculations, Mater. Today Commun., 24
Chen, 2022, Structure design and properties investigation of Bi2O2Se/graphene van der Waals heterojunction from first-principles study, Surface. Interfac., 33
Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896
Britnell, 2012, Field-effect tunneling transistor based on vertical graphene heterostructures, Science, 335, 947, 10.1126/science.1218461
Li, 2022, Study on the floating kinetics of graphene in molten Sn-based alloy based on in-situ observation of X-ray radiography, Compos. B Eng., 238, 10.1016/j.compositesb.2022.109909
Wang, 2019, Chemical and structural stability of 2D layered materials, 2D Mater., 6, 10.1088/2053-1583/ab20d6
Wang, 2018, The ambipolar transport behavior of WSe2 transistors and its analogue circuits, NPG Asia Mater., 10, 703, 10.1038/s41427-018-0062-1
W. Shockley, H.J. Queisser, Detailed Balance Limit of Efficiency of P-N Junction Solar Cells, (n.d.) 11.
Thygesen, 2017, Calculating excitons, plasmons, and quasiparticles in 2D materials and van der Waals heterostructures, 2D Mater., 4, 10.1088/2053-1583/aa6432
Androulidakis, 2018, Tailoring the mechanical properties of 2D materials and heterostructures, 2D Mater., 5, 10.1088/2053-1583/aac764
Geim, 2013, Van der Waals heterostructures, Nature, 499, 419, 10.1038/nature12385
Novoselov, 2016, 2D materials and van der Waals heterostructures, Science, 353, aac9439, 10.1126/science.aac9439
Fang, 2014, Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides, Proc. Natl. Acad. Sci. U.S.A., 111, 6198, 10.1073/pnas.1405435111
Heo, 2015, Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks, Nat. Commun., 6, 7372, 10.1038/ncomms8372
Rivera, 2016, Valley-polarized exciton dynamics in a 2D semiconductor heterostructure, Science, 351, 688, 10.1126/science.aac7820
Palummo, 2015, Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides, Nano Lett., 15, 2794, 10.1021/nl503799t
Rivera, 2015, Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures, Nat. Commun., 6, 6242, 10.1038/ncomms7242
Lee, 2014, Atomically thin p–n junctions with van der Waals heterointerfaces, Nat. Nanotechnol., 9, 676, 10.1038/nnano.2014.150
Sucharitakul, 2015, Intrinsic electron mobility exceeding 10 3 cm 2/(V s) in multilayer InSe FETs, Nano Lett., 15, 3815, 10.1021/acs.nanolett.5b00493
Tamalampudi, 2014, High performance and bendable few-layered InSe photodetectors with broad spectral response, Nano Lett., 14, 2800, 10.1021/nl500817g
Debbichi, 2015, Two-dimensional indium selenides compounds: an Ab initio study, J. Phys. Chem. Lett., 6, 3098, 10.1021/acs.jpclett.5b01356
Bandurin, 2017, High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe, Nat. Nanotechnol., 12, 223, 10.1038/nnano.2016.242
Shi, 2017, Oxidation mechanism and protection strategy of ultrathin indium selenide: insight from theory, J. Phys. Chem. Lett., 8, 4368, 10.1021/acs.jpclett.7b02059
Kistanov, 2016, Atomic-scale mechanisms of defect- and light-induced oxidation and degradation of InSe, J. Mater. Chem. C, 4, 53
Ding, 2017, Enhancement of hole mobility in InSe monolayer via an InSe and black phosphorus heterostructure, Nanoscale, 9, 14682, 10.1039/C7NR02725G
Errandonea, 2006, High-pressure electrical transport measurements on p-type GaSe and InSe, High Pres. Res., 26, 513, 10.1080/08957950601101787
Chen, 2020, Structural stability and electronic and optical properties of bulk WS2 from first-principles investigations, J. Electron. Mater., 49, 7363, 10.1007/s11664-020-08475-2
Cen, 2023, The adjustable electronic and photoelectric properties of the WS2/WSe2 and WSe2/WTe2 van der Waals heterostructures, Vacuum, 212, 10.1016/j.vacuum.2023.112020
Villamayor, 2021, Growth of two-dimensional WS2 thin films by reactive sputtering, Vacuum, 188, 10.1016/j.vacuum.2021.110205
Sen, 2020, Modulation of electronic and transport properties of bilayer heterostructures: InSe/MoS 2 and InSe/h -BN as the prototype, Phys. Rev. B, 101, 10.1103/PhysRevB.101.235425
Yang, 2019, The 2D InSe/WS 2 heterostructure with enhanced optoelectronic performance in the visible region, Chin. Phys. Lett., 36, 10.1088/0256-307X/36/9/097301
He, 2023, The tunability of electronic and transport properties of InSe/MoSe2 van der Waals heterostructure: a first-principles study, Surface. Interfac., 36
Wang, 2021, Tunable electronic, optical, and spintronic properties in InSe/MTe2 (M = Pd, Pt) van der Waals heterostructures, Vacuum, 183, 10.1016/j.vacuum.2020.109859
Wang, 2022, The aggregation phenomenon of impurity atoms in Si and the properties of C-doped Si studied by first-principle calculations, Vacuum, 205, 10.1016/j.vacuum.2022.111417
Zhang, 2021, Electronic and mechanical properties of monocrystalline silicon doped with trace content of N or P: a first-principles study, Solid State Sci., 120, 10.1016/j.solidstatesciences.2021.106723
Bi, 2020, Effect of Co addition into Ni film on shear strength of solder/Ni/Cu system: experimental and theoretical investigations, Mater. Sci. Eng., A, 788, 10.1016/j.msea.2020.139589
Ji, 2023, Effect of refractory elements M (=Re, W, Mo or Ta) on the diffusion properties of boron in nickel-based single crystal superalloys, Vacuum, 211, 10.1016/j.vacuum.2023.111923
Han, 2023, Synergistic effects of alloy elements on the structural stability, mechanical properties and electronic structure of Ni3Sn4: using first principles, Vacuum, 214, 10.1016/j.vacuum.2023.112239
Li, 2023, Comparative study of the micro-mechanism of charge redistribution at metal-semiconductor and semimetal-semiconductor interfaces: Pt(Ni)-MoS2 and Bi-MoS2(WSe2) as the prototype, Appl. Surf. Sci., 623, 10.1016/j.apsusc.2023.157036
Born, 2014
Wang, 2012, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., 7, 699, 10.1038/nnano.2012.193
Jiang, 2015, Graphene versus MoS2: a short review, Front. Physiol., 10, 287, 10.1007/s11467-015-0459-z
Zhang, 2019, ACS Appl. Mater. Interfaces, 11, 24648, 10.1021/acsami.9b01418
Sa, 2019, Elastic anisotropy and optic isotropy in black phosphorene/transition-metal trisulfide van der Waals heterostructures, ACS Omega, 4, 4101, 10.1021/acsomega.9b00011
Singh, 2018, Structural, electronic, vibrational, and elastic properties of graphene/MoS 2 bilayer heterostructures, Phys. Rev. B, 98, 10.1103/PhysRevB.98.155309
Liang, 2020, Electronic structure and optical properties of a Mn-doped InSe/WSe2 van der Waals heterostructure: first principles calculations, J. Kor. Phys. Soc., 77, 587, 10.3938/jkps.77.587
Qiao, 2014, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun., 5, 4475, 10.1038/ncomms5475
Bruzzone, 2011, Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride, Appl. Phys. Lett., 99, 10.1063/1.3665183