Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tính chất cứng hóa do biến dạng của hợp kim entropy cao MoNbTaTiVZr được xử lý bằng phương pháp xoắn áp suất cao
Tóm tắt
Một hợp kim entropy cao (HEA) MoNbTaTiVZr có thành phần tương đương được sản xuất bằng phương pháp nung chảy hồ quang đã được xử lý bằng xoắn áp suất cao (HPT) ở nhiệt độ phòng. Các tính toán nhiệt động lực học và kết quả thực nghiệm chỉ ra một cấu trúc vi mô có hai pha, bao gồm khoảng 85% pha BCC thiếu Zr và 15% pha BCC giàu Zr trong điều kiện đúc. HPT làm giảm kích thước hạt và tăng mật độ đứt gãy mà không hình thành các pha mới. Sau bốn vòng xoay, pha thiếu Zr đã được làm cứng lên đến khoảng 540 HV, trong khi pha giàu Zr cho thấy sự làm mềm với độ cứng giảm xuống còn khoảng 480 HV. Sự xuất hiện của cấu trúc vi mô giống như xoáy nước và phân tích nồng độ nguyên tố cho thấy sự đồng nhất cơ học do cắt, mà được cho là nguyên nhân của sự làm mềm quan sát được.
Từ khóa
#Hợp kim entropy cao #MoNbTaTiVZr #xoắn áp suất cao #cứng hóa do biến dạng #cấu trúc vi mô #đồng nhất cơ họcTài liệu tham khảo
Miracle, D.B., Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017)
Murty, B.S., Yeh, J.W., Ranganathan, S., Bhattacharjee, P.P.: High-Entropy Alloys. Elsevier, Amsterdam (2019)
Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., Liaw, P.K.: Refractory high-entropy alloys. Intermetallics 18(9), 1758–1765 (2010)
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater Sci. 61, 1–93 (2014)
Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004)
Reiberg, M., von Kobylinski, J., Werner, E.: Characterization of powder metallurgically produced AlCrFeNiTi multi-principle element alloys. Continuum Mech. Thermodyn. 32(4), 1147–1158 (2020)
Reiberg, M., Li, X., Maawad, E., Werner, E.: Lattice strain during compressive loading of AlCrFeNiTi multi-principal element alloys. Continuum Mech. Thermodyn. 33, 1541–1554 (2021)
Senkov, O.N., Gorsse, S., Miracle, D.B.: High temperature strength of refractory complex concentrated alloys. Acta Mater. 175, 394–405 (2019)
Senkov, O.N., Miracle, D.B., Chaput, K.J., Couzinie, J.P.: Development and exploration of refractory high entropy alloys—a review. J. Mater. Res. 33(19), 3092–3128 (2018)
Senkov, O.N., Senkova, S.V., Miracle, D.B., Woodward, C.: Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system. Mater. Sci. Eng. A 565, 51–62 (2013)
Pippan, R., Scheriau, S., Taylor, A., Hafok, M., Hohenwarter, A., Bachmaier, A.: Saturation of fragmentation during severe plastic deformation. Annu. Rev. Mater. Res. 40(1), 319–343 (2010)
Zhilyaev, A.P., Langdon, T.G.: Using high-pressure torsion for metal processing: fundamentals and applications. Prog. Mater Sci. 53(6), 893–979 (2008)
Kulagin, R., Beygelzimer, Y., Ivanisenko, Y., Mazilkin, A., Straumal, B., Hahn, H.: Instabilities of interfaces between dissimilar metals induced by high pressure torsion. Mater. Lett. 222, 172–175 (2018)
Pouryazdan, M., Kaus, B.J., Rack, A., Ershov, A., Hahn, H.: Mixing instabilities during shearing of metals. Nat. Commun. 8(1), 1–7 (2017)
Taheriniya, S., Davani, F.A., Hilke, S., Hepp, M., Gadelmeier, C., Chellali, M.R., Boll, T., Rösner, H., Peterlechner, M., Gammer, C., Divinski, S.V., Butz, B., Glatzel, U., Hahn, H., Wilde, G.: High entropy alloy nanocomposites produced by high pressure torsion. Acta Materialia 208,(2021)
Guo, W., Jägle, E.A., Choi, P.P., Yao, J., Kostka, A., Schneider, J.M., Raabe, D.: Shear-induced mixing governs codeformation of crystalline-amorphous nanolaminates. Phys. Rev. Lett. 113(3), 1–5 (2014)
Straumal, B.B., Pontikis, V., Kilmametov, A.R., Mazilkin, A.A., Dobatkin, S.V., Baretzky, B.: Competition between precipitation and dissolution in Cu-Ag alloys under high pressure torsion. Acta Mater. 122, 60–71 (2017)
Setman, D., Schafler, E., Korznikova, E., Zehetbauer, M.J.: The presence and nature of vacancy type defects in nanometals detained by severe plastic deformation. Mater. Sci. Eng., A 493(1–2), 116–122 (2008)
Moon, J., Qi, Y., Tabachnikova, E., Estrin, Y., Choi, W.M., Joo, S.H., Lee, B.J., Podolskiy, A., Tikhonovsky, M., Kim, H.S.: Microstructure and mechanical properties of high-entropy alloy Co20Cr26Fe20Mn20Ni14 processed by high-pressure torsion at 77 K and 300 K. Sci. Rep. 8(1), 1–12 (2018)
Praveen, S., Bae, J.W., Asghari-Rad, P., Park, J.M., Kim, H.S.: Ultra-high tensile strength nanocrystalline CoCrNi equi-atomic medium entropy alloy processed by high-pressure torsion. Mater. Sci. Eng., A 735, 394–397 (2018)
Schuh, B., Mendez-Martin, F., Völker, B., George, E.P., Clemens, H., Pippan, R., Hohenwarter, A.: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258–268 (2015)
Zheng, R., Chen, J., Xiao, W., Ma, C.: Microstructure and tensile properties of nanocrystalline (FeNiCoCu)1-\(x\)Ti\(x\)Al\(x\) high entropy alloys processed by high pressure torsion. Intermetallics 74, 38–45 (2016)
Gubicza, J., Heczel, A., Kawasaki, M., Han, J.K., Zhao, Y., Xue, Y., Huang, S., Lábár, J.L.: Evolution of microstructure and hardness in Hf25Nb25Ti25Zr25 high-entropy alloy during high-pressure torsion. J. Alloy. Compd. 788, 318–328 (2019)
Schuh, B., Völker, B., Todt, J., Schell, N., Perrière, L., Li, J., Couzinié, J.P., Hohenwarter, A.: Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties. Acta Mater. 142, 201–212 (2018)
Tang, Q.H., Huang, Y., Huang, Y.Y., Liao, X.Z., Langdon, T.G., Dai, P.Q.: Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing. Mater. Lett. 151, 126–129 (2015)
Edalati, P., Floriano, R., Tang, Y., Mohammadi, A., Pereira, K.D., Luchessi, A.D., Edalati, K.: Ultrahigh hardness and biocompatibility of high-entropy alloy TiAlFeCoNi processed by high-pressure torsion. Mater. Sci. Eng., C 112, 110908 (2020)
Bachmaier, A., Pippan, R.: High-pressure torsion deformation induced phase transformations and formations: new material combinations and advanced properties. Mater. Trans. 60(7), 1256–1269 (2019)
Kormout, K.S., Pippan, R., Bachmaier, A.: Deformation-induced supersaturation in immiscible material systems during high-pressure torsion. Adv. Eng. Mater. 19(4), 1–19 (2017)
Stückler, M., Krenn, H., Kürnsteiner, P., Gault, B., De Geuser, F., Weissitsch, L., Wurster, S., Pippan, R., Bachmaier, A.: Intermixing of Fe and Cu on the atomic scale by high-pressure torsion as revealed by DC- and AC-SQUID susceptometry and atom probe tomography. Acta Mater. 196, 210–219 (2020)
Lutterotti, L., Matthies, S., Wenk, H.R.: MAUD (material analysis using diffraction): a user friendly Java program for Rietveld texture analysis and more. In: Proceeding of the twelfth international conference on textures of materials (ICOTOM-12), vol. 1, p. 1599. NRC Research Press Ottowa, Canada (1999)
Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012)
Hebesberger, T., Stüwe, H.P., Vorhauer, A., Wetscher, F., Pippan, R.: Structure of Cu deformed by high pressure torsion. Acta Mater. 53(2), 393–402 (2005)
Vorhauer, A., Pippan, R.: On the homogeneity of deformation by high pressure torsion. Scripta Mater. 51(9), 921–925 (2004)
Wang, Y.C., Langdon, T.G.: Effect of heat treatment on microstructure and microhardness evolution in a Ti-6Al-4V alloy processed by high-pressure torsion. J. Mater. Sci. 48(13), 4646–4652 (2013)
Čížek, J., Haušild, P., Cieslar, M., Melikhova, O., Vlasák, T., Janeček, M., Král, R., Harcuba, P., Lukáč, F., Zýka, J., Málek, J., Moon, J., Kim, H.S.: Strength enhancement of high entropy alloy HfNbTaTiZr by severe plastic deformation. J. Alloy. Compd. 768, 924–937 (2018)
Edalati, K., Ito, Y., Suehiro, K., Horita, Z.: Softening of high purity aluminum and copper processed by high pressure torsion. Int. J. Mater. Res. 100(12), 1668–1673 (2009)
Xu, J., Li, J., Wang, C.T., Shan, D., Guo, B., Langdon, T.G.: Evidence for an early softening behavior in pure copper processed by high-pressure torsion. J. Mater. Sci. 51(4), 1923–1930 (2016)
Ito, Y., Edalati, K., Horita, Z.: High-pressure torsion of aluminum with ultrahigh purity (99.9999%) and occurrence of inverse Hall-Petch relationship. Mater. Sci. Eng., A 679, 428–434 (2017)
Mazilkin, A., Straumal, B., Borodachenkova, M., Valiev, R., Kogtenkova, O., Baretzky, B.: Gradual softening of Al-Zn alloys during high-pressure torsion. Mater. Lett. 84, 63–65 (2012)
Kittel, C., McEuen, P., McEuen, P.: Introduction to solid state physics, vol. 8. Wiley, New York (1996)
Owen, L.R., Pickering, E.J., Playford, H.Y., Stone, H.J., Tucker, M.G., Jones, N.G.: An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy. Acta Mater. 122, 11–18 (2017)
Sabirov, I., Pippan, R.: Formation of a W-25%Cu nanocomposite during high pressure torsion. Scripta Mater. 52(12), 1293–1298 (2005)
Hirth, J.P., Lothe, J., Mura, T.: Theory of dislocations. J. Appl. Mech. 50(2), 476 (1983)
Vitek, V.: Dislocation Cores and Unconventional Properties of Plastic Behavior. Handbook of Materials Modeling pp. 2883–2896 (2005)
Zherebtsov, S., Stepanov, N., Ivanisenko, Y., Shaysultanov, D., Yurchenko, N., Klimova, M., Salishchev, G.: Evolution of microstructure and mechanical properties of a CoCrFeMnNi high-entropy alloy during high-pressure torsion at room and cryogenic temperatures. Metals 8(2),(2018)