Strain hardening exponent role in phenomenological ductile fracture criteria

European Journal of Mechanics - A/Solids - Tập 57 - Trang 149-164 - 2016
František Šebek1, Petr Kubík1, Jiří Hůlka2, Jindřich Petruška1
1Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
2Institute of Applied Mechanics, Resslova 972/3, 602 00, Brno, Czech Republic

Tài liệu tham khảo

Abiri, 2015, Non-local damage models in manufacturing simulations, Eur. J. Mech. A/Solids, 49, 548, 10.1016/j.euromechsol.2014.08.012 Bai, 2008, A new model of metal plasticity and fracture with pressure and Lode dependence, Int. J. Plast., 24, 1071, 10.1016/j.ijplas.2007.09.004 Bai, 2010, Application of extended Mohr–Coulomb criterion to ductile fracture, Int. J. Fract., 161, 1, 10.1007/s10704-009-9422-8 Bai, 2015, A comparative study of three groups of ductile fracture loci in the 3D space, Eng. Fract. Mech., 135, 147, 10.1016/j.engfracmech.2014.12.023 Bandstra, 2004, A simulation of growth and coalescence of voids during ductile fracture, Mat. Sci. Eng. A, 387–389, 399, 10.1016/j.msea.2004.02.092 Bao, 2005, Dependence of ductile crack formation in tensile tests on stress triaxiality, stress and strain ratios, Eng. Fract. Mech., 72, 505, 10.1016/j.engfracmech.2004.04.012 Bao, 2004, On fracture locus in the equivalent strain and stress triaxiality space, Int. J. Mech. Sci., 46, 81, 10.1016/j.ijmecsci.2004.02.006 Barsoum, 2007, Rupture mechanisms in combined tension and shear – experiments, Int. J. Solids Struct., 44, 1768, 10.1016/j.ijsolstr.2006.09.031 Børvik, 2003, On the influence of stress triaxiality and strain rate on the behaviour of a structural steel. Part II. Numerical study, Eur. J. Mech. A/Solids, 22, 15, 10.1016/S0997-7538(02)00005-0 Bridgman, 1964 Cao, 2013, Identification methodology and comparison of phenomenological ductile damage models via hybrid numerical–experimental analysis of fracture experiments conducted on a zirconium alloy, Int. J. Solids Struct., 50, 3984, 10.1016/j.ijsolstr.2013.08.011 Cao, 2014, A Lode-dependent enhanced Lemaitre model for ductile fracture prediction at low stress triaxiality, Eng. Fract. Mech., 124–125, 80, 10.1016/j.engfracmech.2014.03.021 Cockroft, 1968, Ductility and the workability of metals, J. Inst. Met., 69, 33 Dunand, 2010, Hybrid experimental–numerical analysis of basic ductile fracture experiments for sheet metals, Int. J. Solids Struct., 47, 1130, 10.1016/j.ijsolstr.2009.12.011 Dunand, 2011, On the predictive capabilities of the shear modified Gurson and the modified Mohr–Coulomb fracture models over a wide range of stress triaxialities and Lode angles, J. Mech. Phys. Solids, 59, 1374, 10.1016/j.jmps.2011.04.006 Dunand, 2011, Optimized butterfly specimen for the fracture testing of sheet materials under combined normal and shear loading, Eng. Fract. Mech., 78, 2919, 10.1016/j.engfracmech.2011.08.008 Ebnoether, 2013, Predicting ductile fracture of low carbon steel sheets: stress-based versus mixed stress/strain-based Mohr–Coulomb model, Int. J. Solids Struct., 50, 1055, 10.1016/j.ijsolstr.2012.11.026 Faleskog, 2013, Tension-torsion fracture experiments – Part I: experiments and a procedure to evaluate the equivalent plastic strain, Int. J. Solids Struct., 50, 4241, 10.1016/j.ijsolstr.2013.08.029 Feigenbaum, 2012, Multiaxial ratcheting with advanced kinematic and directional distortional hardening rules, Int. J. Solids Struct., 49, 3063, 10.1016/j.ijsolstr.2012.06.006 Gao, 2011, On stress-state dependent plasticity modeling: significance of the hydrostatic stress, the third invariant of stress deviator and the non-associated flow rule, Int. J. Plast., 27, 217, 10.1016/j.ijplas.2010.05.004 Graham, 2012, Development of a combined tension–torsion experiment for calibration of ductile fracture models under conditions of low triaxiality, Int. J. Mech. Sci., 54, 172, 10.1016/j.ijmecsci.2011.10.007 Gruben, 2012, Evaluation of uncoupled ductile fracture criteria for the dual-phase steel Docol 600DL, Int. J. Mech. Sci., 62, 133, 10.1016/j.ijmecsci.2012.06.009 Haltom, 2013, Ductile failure under combined shear and tension, Int. J. Solids Struct., 50, 1507, 10.1016/j.ijsolstr.2012.12.009 Hollomon, 1945, Tensile deformation, Trans. AIME, 268 Khan, 2012, A new approach for ductile fracture prediction on Al 2024-T351 alloy, Int. J. Plast., 35, 1, 10.1016/j.ijplas.2012.01.003 Kroon, 2013, Numerical implementation of a J2- and J3-dependent plasticity model based on a spectral decomposition of the stress deviator, Comput. Mech., 52, 1059, 10.1007/s00466-013-0863-6 Kweon, 2012, Damage at negative triaxiality, Eur. J. Mech. A/Solids, 31, 203, 10.1016/j.euromechsol.2011.02.005 Li, 2010, Prediction of plane strain fracture of AHSS sheets with post-initiation softening, Int. J. Solids Struct., 47, 2316, 10.1016/j.ijsolstr.2010.04.028 Lindholm, 1980, Large strain, high strain rate testing of copper, J. Eng. Mater. Technol., 102, 376, 10.1115/1.3224827 Lou, 2012, New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals, Int. J. Solids Struct., 49, 3605, 10.1016/j.ijsolstr.2012.02.016 Lou, 2014, Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality, Int. J. Plast., 54, 56, 10.1016/j.ijplas.2013.08.006 Mohr, 2015, Micromechanically-motivated phenomenological Hosford–Coulomb model for predicting ductile fracture initiation at low stress triaxialities, Int. J. Solids Struct., 67–68, 40, 10.1016/j.ijsolstr.2015.02.024 Morin, 2015, Numerical assessment, implementation and application of an extended Gurson model accounting for void size effects, Eur. J. Mech. A/Solids, 51, 183, 10.1016/j.euromechsol.2014.12.008 Nahshon, 2008, Modification of the Gurson model for shear failure, Eur. J. Mech. A/Solids, 27, 1, 10.1016/j.euromechsol.2007.08.002 Papasidero, 2014, Determination of the effect of stress state on the onset of ductile fracture through tension-torsion experiments, Exp. Mech., 54, 137, 10.1007/s11340-013-9788-4 Španiel, 2014, Calibration of fracture locus in scope of uncoupled elastic–plastic-ductile fracture material models, Adv. Eng. Softw., 72, 95, 10.1016/j.advengsoft.2013.05.007 Stoughton, 2011, A new approach for failure criterion for sheet metals, Int. J. Plast., 27, 440, 10.1016/j.ijplas.2010.07.004 Wierzbicki, 2005, A new experimental technique for constructing a fracture envelope of metals under multi-axial loading, 1295 Wierzbicki, 2005, Calibration and evaluation of seven fracture models, Int. J. Mech. Sci., 47, 719, 10.1016/j.ijmecsci.2005.03.003 Xue, 2013, Tension–torsion fracture experiments – Part II: simulations with the extended Gurson model and a ductile fracture criterion based on plastic strain, Int. J. Solids Struct., 50, 4258, 10.1016/j.ijsolstr.2013.08.028 Zhou, 2012, Modeling the ductile fracture behavior of an aluminum alloy 5083-H116 including the residual stress effect, Eng. Fract. Mech., 85, 103, 10.1016/j.engfracmech.2012.02.014