Strain engineering in novel α-SbP binary material with tensile-robust and compress-sensitive band structures

Ying Shu1, Zongyu Huang1,2, Huating Liu1, Yujie Liao1, Fei Liu1, Xiang Qi1, Jianxin Zhong1
1Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronic, Xiangtan University, Hunan, 411105, PR China
2Hunan Key Laboratory of Two Dimensional Materials, Hunan University, Changsha, 410082, China

Tài liệu tham khảo

Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896 Zhu, 2010, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater., 22, 3906, 10.1002/adma.201001068 Han, 2015, Graphene-supported flocculent-like TiO2 nanostructures for enhanced photoelectrochemical activity and photodegradation performance, Ceram. Int., 41, 7471, 10.1016/j.ceramint.2015.02.068 Lu, 2017, Highly efficient visible-light-induced photoactivity of Z-scheme g-C3N4/Ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen, ACS Sustain. Chem. Eng., 5, 1436, 10.1021/acssuschemeng.6b02010 He, 2018, Two-dimensional Janus transition-metal dichalcogenides with intrinsic ferromagnetism and half-metallicity, Comput. Mater. Sci., 152, 151, 10.1016/j.commatsci.2018.05.049 Ezawa, 2012, A topological insulator and helical zero mode in silicene under an inhomogeneous electric field, New J. Phys., 14, 10.1088/1367-2630/14/3/033003 Vogt, 2012, Silicene: compelling experimental evidence for graphenelike two-dimensional silicon, Phys. Rev. Lett., 108, 155501, 10.1103/PhysRevLett.108.155501 Gao, 2016, Monolayer MXenes: promising half-metals and spin gapless semiconductors, Nanoscale, 8, 8986, 10.1039/C6NR01333C Li, 2015, Structures, stabilities, and electronic properties of defects in monolayer black phosphorus, Sci. Rep., 5 Li, 2014, Black phosphorus field-effect transistors, Nat. Nanotechnol., 9, 372, 10.1038/nnano.2014.35 Chaves, 2017, 381 Kou, 2015, Phosphorene: fabrication, properties, and applications, J. Phys. Chem. Lett., 6, 2794, 10.1021/acs.jpclett.5b01094 Li, 2016 Tiouitchi, 2018, An easy route to synthesis high-quality black phosphorus from amorphous red phosphorus, Mater. Lett. Sibari, 2017, Adsorption and Diffusion on a Phosphorene Monolayer: a DFT Study, J. Solid State Electrochem. Lee, 2016, Black phosphorus (BP) nanodots for potential biomedical applications, Small, 12, 10.1002/smll.201502756 Zhang, 2015, Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band‐gap transitions, Angew. Chem., 54, 3112, 10.1002/anie.201411246 Zhang, 2016, Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities, Angew. Chem., 55, 1666, 10.1002/anie.201507568 Akturk, 2016, Single and bilayer bismuthene: stability at high temperature and mechanical and electronic properties, Phys. Rev. B, 94, 10.1103/PhysRevB.94.014115 Zhang, 2018, Recent progress in 2D group-VA semiconductors: from theory to experiment, Chem. Soc. Rev., 47, 982, 10.1039/C7CS00125H Zhu, 2015, Strain-induced metal-semiconductor transition in monolayers and bilayers of gray arsenic: a computational study, Phys. Rev. B, 91, 161404, 10.1103/PhysRevB.91.161404 Pumera, 2017, 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus, Adv. Mater., 29, 1605299, 10.1002/adma.201605299 Kim, 2012, Effect of Sb doping on the opto-electronic properties of SnO2 nanowires, Thin Solid Films, 520, 6471, 10.1016/j.tsf.2012.07.001 Lindberg, 2005, The antimony-vacancy defect in p-type germanium, Appl. Phys. Lett., 87, 172103, 10.1063/1.2112168 Yuan, 2015, Transport and optical properties of single- and bilayer black phosphorus with defects, Phys. Rev. B, 91 Li, 2014, Modulation of the electronic properties of ultrathin black phosphorus by strain and electrical field, J. Phys. Chem. C, 118, 23970, 10.1021/jp506881v Cao, 2015, Electronic properties of monolayer and bilayer arsenene under in-plain biaxial strains, Superlattice. Microst., 86, 501, 10.1016/j.spmi.2015.08.006 Guo, 2019, 2D V‐V binary materials: status and challenges, Adv. Mater., 31, 1902352, 10.1002/adma.201902352 Kocabas, 2018, A distinct correlation between the vibrational and thermal transport properties of group VA monolayer crystals, Nanoscale, 10, 7803, 10.1039/C7NR09349G Nie, 2017, Room-temperature half-metallicity in monolayer honeycomb structures of group-V binary compounds with carrier doping, Phys. Rev. B, 96 Li, 2017, Unconventional band inversion and intrinsic quantum spin Hall effect in functionalized group-V binary films, Sci. Rep., 7, 6126, 10.1038/s41598-017-05420-y Yu, 2016, Atomically thin binary V–V compound semiconductor: a first-principles study, J. Mater. Chem. C, 4, 6581, 10.1039/C6TC01505K Chen, 2019, A new phase of monolayer group-V binary compounds with direct bandgap and giant piezoelectric properties, J. Appl. Phys., 125, 214303, 10.1063/1.5081489 Zhang, 2016, Semiconductor-topological insulator transition of two-dimensional SbAs induced by biaxial tensile strain, Phys. Rev. B, 93, 10.1103/PhysRevB.93.245303 Xiao, 2018, New two-dimensional V-V binary compounds with a honeycomb-like structure: a first-principles study, Mater. Res. Express, 5, 10.1088/2053-1591/aab06c Yin, 2017, Giant piezoelectric effects in monolayer group-V binary compounds with honeycomb phases: a first-principles prediction, J. Phys. Chem. C, 121, 25576, 10.1021/acs.jpcc.7b08822 Al-Shami, 2018, Tuning the optical and electrical properties of orthorhombic hybrid perovskite CH 3 NH 3 PbI 3 by first-principles simulations: strain-engineering, Sol. Energy Mat. Sol. C, 180, 10.1016/j.solmat.2017.06.047 Mounkachi, 2016, Band-gap engineering of SnO2, Sol. Energy Mat. Sol. C, 148, 10.1016/j.solmat.2015.09.062 Ramadan, 2014, A review of piezoelectric polymers as functional materials for electromechanical transducers, Smart Mater. Struct., 23, 10.1088/0964-1726/23/3/033001 Gui, 2008, Band structure engineering of graphene by strain: first-principles calculations, Phys. Rev. B, 78, 10.1103/PhysRevB.78.075435 Nguyen, 2016, Effect of biaxial strain and external electric field on electronic properties of MoS2 monolayer: a first-principle study, Chem. Phys., 468, 9, 10.1016/j.chemphys.2016.01.009 Wang, 2018, First-principles study of the role of strain and hydrogenation on C3N, Carbon, 134, 22, 10.1016/j.carbon.2018.03.068 Xie, 2018, Electronic and optical properties of monolayer black phosphorus induced by bi-axial strain, Comput. Mater. Sci., 144, 304, 10.1016/j.commatsci.2017.12.026 Car, 1985, Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett., 55, 2471, 10.1103/PhysRevLett.55.2471 Blochl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953 Hafner, 2008, Ab‐initio simulations of materials using VASP: density‐functional theory and beyond, J. Comput. Chem., 29, 2044, 10.1002/jcc.21057 Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Froyen, 1989, Brillouin-zone integration by Fourier quadrature: special points for superlattice and supercell calculations, Phys. Rev. B, 39, 3168, 10.1103/PhysRevB.39.3168 Xu, 2017, First-principle calculations of optical properties of monolayer arsenene and antimonene allotropes, Ann. Phys., 529, 1600152, 10.1002/andp.201600152 Wang, 2018, First-principles studies electronic structures and opticalproperties of four new phosphorene polymorphs, SCIENTIA SINICA Physica, Mechanica & Astronomica, 48, 10.1360/SSPMA2017-00356 Zhang, 2008, First-principles study of electronic and optical properties in wurtzite Zn1−xCdxO, J. Appl. Phys., 103 Segall, 2002, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter, 14, 2717, 10.1088/0953-8984/14/11/301 Hao, 2007, Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles, Chem. Phys. Lett., 446, 115, 10.1016/j.cplett.2007.08.027