Strain engineering in novel α-SbP binary material with tensile-robust and compress-sensitive band structures
Tài liệu tham khảo
Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896
Zhu, 2010, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater., 22, 3906, 10.1002/adma.201001068
Han, 2015, Graphene-supported flocculent-like TiO2 nanostructures for enhanced photoelectrochemical activity and photodegradation performance, Ceram. Int., 41, 7471, 10.1016/j.ceramint.2015.02.068
Lu, 2017, Highly efficient visible-light-induced photoactivity of Z-scheme g-C3N4/Ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen, ACS Sustain. Chem. Eng., 5, 1436, 10.1021/acssuschemeng.6b02010
He, 2018, Two-dimensional Janus transition-metal dichalcogenides with intrinsic ferromagnetism and half-metallicity, Comput. Mater. Sci., 152, 151, 10.1016/j.commatsci.2018.05.049
Ezawa, 2012, A topological insulator and helical zero mode in silicene under an inhomogeneous electric field, New J. Phys., 14, 10.1088/1367-2630/14/3/033003
Vogt, 2012, Silicene: compelling experimental evidence for graphenelike two-dimensional silicon, Phys. Rev. Lett., 108, 155501, 10.1103/PhysRevLett.108.155501
Gao, 2016, Monolayer MXenes: promising half-metals and spin gapless semiconductors, Nanoscale, 8, 8986, 10.1039/C6NR01333C
Li, 2015, Structures, stabilities, and electronic properties of defects in monolayer black phosphorus, Sci. Rep., 5
Li, 2014, Black phosphorus field-effect transistors, Nat. Nanotechnol., 9, 372, 10.1038/nnano.2014.35
Chaves, 2017, 381
Kou, 2015, Phosphorene: fabrication, properties, and applications, J. Phys. Chem. Lett., 6, 2794, 10.1021/acs.jpclett.5b01094
Li, 2016
Tiouitchi, 2018, An easy route to synthesis high-quality black phosphorus from amorphous red phosphorus, Mater. Lett.
Sibari, 2017, Adsorption and Diffusion on a Phosphorene Monolayer: a DFT Study, J. Solid State Electrochem.
Lee, 2016, Black phosphorus (BP) nanodots for potential biomedical applications, Small, 12, 10.1002/smll.201502756
Zhang, 2015, Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band‐gap transitions, Angew. Chem., 54, 3112, 10.1002/anie.201411246
Zhang, 2016, Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities, Angew. Chem., 55, 1666, 10.1002/anie.201507568
Akturk, 2016, Single and bilayer bismuthene: stability at high temperature and mechanical and electronic properties, Phys. Rev. B, 94, 10.1103/PhysRevB.94.014115
Zhang, 2018, Recent progress in 2D group-VA semiconductors: from theory to experiment, Chem. Soc. Rev., 47, 982, 10.1039/C7CS00125H
Zhu, 2015, Strain-induced metal-semiconductor transition in monolayers and bilayers of gray arsenic: a computational study, Phys. Rev. B, 91, 161404, 10.1103/PhysRevB.91.161404
Pumera, 2017, 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus, Adv. Mater., 29, 1605299, 10.1002/adma.201605299
Kim, 2012, Effect of Sb doping on the opto-electronic properties of SnO2 nanowires, Thin Solid Films, 520, 6471, 10.1016/j.tsf.2012.07.001
Lindberg, 2005, The antimony-vacancy defect in p-type germanium, Appl. Phys. Lett., 87, 172103, 10.1063/1.2112168
Yuan, 2015, Transport and optical properties of single- and bilayer black phosphorus with defects, Phys. Rev. B, 91
Li, 2014, Modulation of the electronic properties of ultrathin black phosphorus by strain and electrical field, J. Phys. Chem. C, 118, 23970, 10.1021/jp506881v
Cao, 2015, Electronic properties of monolayer and bilayer arsenene under in-plain biaxial strains, Superlattice. Microst., 86, 501, 10.1016/j.spmi.2015.08.006
Guo, 2019, 2D V‐V binary materials: status and challenges, Adv. Mater., 31, 1902352, 10.1002/adma.201902352
Kocabas, 2018, A distinct correlation between the vibrational and thermal transport properties of group VA monolayer crystals, Nanoscale, 10, 7803, 10.1039/C7NR09349G
Nie, 2017, Room-temperature half-metallicity in monolayer honeycomb structures of group-V binary compounds with carrier doping, Phys. Rev. B, 96
Li, 2017, Unconventional band inversion and intrinsic quantum spin Hall effect in functionalized group-V binary films, Sci. Rep., 7, 6126, 10.1038/s41598-017-05420-y
Yu, 2016, Atomically thin binary V–V compound semiconductor: a first-principles study, J. Mater. Chem. C, 4, 6581, 10.1039/C6TC01505K
Chen, 2019, A new phase of monolayer group-V binary compounds with direct bandgap and giant piezoelectric properties, J. Appl. Phys., 125, 214303, 10.1063/1.5081489
Zhang, 2016, Semiconductor-topological insulator transition of two-dimensional SbAs induced by biaxial tensile strain, Phys. Rev. B, 93, 10.1103/PhysRevB.93.245303
Xiao, 2018, New two-dimensional V-V binary compounds with a honeycomb-like structure: a first-principles study, Mater. Res. Express, 5, 10.1088/2053-1591/aab06c
Yin, 2017, Giant piezoelectric effects in monolayer group-V binary compounds with honeycomb phases: a first-principles prediction, J. Phys. Chem. C, 121, 25576, 10.1021/acs.jpcc.7b08822
Al-Shami, 2018, Tuning the optical and electrical properties of orthorhombic hybrid perovskite CH 3 NH 3 PbI 3 by first-principles simulations: strain-engineering, Sol. Energy Mat. Sol. C, 180, 10.1016/j.solmat.2017.06.047
Mounkachi, 2016, Band-gap engineering of SnO2, Sol. Energy Mat. Sol. C, 148, 10.1016/j.solmat.2015.09.062
Ramadan, 2014, A review of piezoelectric polymers as functional materials for electromechanical transducers, Smart Mater. Struct., 23, 10.1088/0964-1726/23/3/033001
Gui, 2008, Band structure engineering of graphene by strain: first-principles calculations, Phys. Rev. B, 78, 10.1103/PhysRevB.78.075435
Nguyen, 2016, Effect of biaxial strain and external electric field on electronic properties of MoS2 monolayer: a first-principle study, Chem. Phys., 468, 9, 10.1016/j.chemphys.2016.01.009
Wang, 2018, First-principles study of the role of strain and hydrogenation on C3N, Carbon, 134, 22, 10.1016/j.carbon.2018.03.068
Xie, 2018, Electronic and optical properties of monolayer black phosphorus induced by bi-axial strain, Comput. Mater. Sci., 144, 304, 10.1016/j.commatsci.2017.12.026
Car, 1985, Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett., 55, 2471, 10.1103/PhysRevLett.55.2471
Blochl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953
Hafner, 2008, Ab‐initio simulations of materials using VASP: density‐functional theory and beyond, J. Comput. Chem., 29, 2044, 10.1002/jcc.21057
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Froyen, 1989, Brillouin-zone integration by Fourier quadrature: special points for superlattice and supercell calculations, Phys. Rev. B, 39, 3168, 10.1103/PhysRevB.39.3168
Xu, 2017, First-principle calculations of optical properties of monolayer arsenene and antimonene allotropes, Ann. Phys., 529, 1600152, 10.1002/andp.201600152
Wang, 2018, First-principles studies electronic structures and opticalproperties of four new phosphorene polymorphs, SCIENTIA SINICA Physica, Mechanica & Astronomica, 48, 10.1360/SSPMA2017-00356
Zhang, 2008, First-principles study of electronic and optical properties in wurtzite Zn1−xCdxO, J. Appl. Phys., 103
Segall, 2002, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter, 14, 2717, 10.1088/0953-8984/14/11/301
Hao, 2007, Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles, Chem. Phys. Lett., 446, 115, 10.1016/j.cplett.2007.08.027