Stochiometric quantification of the thiol redox proteome of macrophages reveals subcellular compartmentalization and susceptibility to oxidative perturbations

Redox Biology - Tập 36 - Trang 101649 - 2020
Jicheng Duan1, Tong Zhang1, Matthew Gaffrey1, Karl Weitz1, Ronald J. Moore1, Xiaolu Li2, Ming Xian3, Brian D. Thrall1, Weijun Qian1
1Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
2Department of Biological Systems Engineering, Washington State University, Richland, WA, USA
3Department of Chemistry, Washington State University, Pullman, WA, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ursini, 2016, Redox homeostasis: the Golden Mean of healthy living, Redox Biol., 8, 205, 10.1016/j.redox.2016.01.010

Duan, 2017, Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines, Mol. Biosyst., 13, 816, 10.1039/C6MB00861E

Yang, 2016, The expanding landscape of the thiol redox proteome, Mol. Cell. Proteomics, 15, 1, 10.1074/mcp.O115.056051

Janssen-Heininger, 2008, Redox-based regulation of signal transduction: principles, pitfalls, and promises, Free Radic. Biol. Med., 45, 1, 10.1016/j.freeradbiomed.2008.03.011

Paulsen, 2013, Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery, Chem. Rev., 113, 4633, 10.1021/cr300163e

Benz, 2008, Ageing, oxidative stress and cancer: paradigms in parallax, Nat. Rev. Canc., 8, 875, 10.1038/nrc2522

Mariani, 2005, Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview, J. Chromatogr. B, 827, 65, 10.1016/j.jchromb.2005.04.023

Rains, 2011, Oxidative stress, insulin signaling, and diabetes, Free Radic. Biol. Med., 50, 567, 10.1016/j.freeradbiomed.2010.12.006

Reuter, 2010, Oxidative stress, inflammation, and cancer How are they linked?, Free Radic. Biol. Med., 49, 1603, 10.1016/j.freeradbiomed.2010.09.006

Valko, 2007, Free radicals and antioxidants in normal physiological functions and human disease, Int. J. Biochem. Cell Biol., 39, 44, 10.1016/j.biocel.2006.07.001

Short, 2016, Protein thiol redox signaling in monocytes and macrophages, Antioxidants Redox Signal., 25, 816, 10.1089/ars.2016.6697

Ullevig, 2013, S-glutathionylation in monocyte and macrophage (dys) function, Int. J. Mol. Sci., 14, 15212, 10.3390/ijms140815212

Mieyal, 2008, Molecular mechanisms and clinical implications of reversible protein S-glutathionylation, Antioxidants Redox Signal., 10, 1941, 10.1089/ars.2008.2089

Bachi, 2013, Redox proteomics: chemical principles, methodological approaches and biological/biomedical promises, Chem. Rev., 113, 596, 10.1021/cr300073p

Lopez-Sanchez, 2014, Proteomic approaches to evaluate protein S-nitrosylation in disease, Mass Spectrom. Rev., 33, 7, 10.1002/mas.21373

Kramer, 2015, The measurement of reversible redox dependent post-translational modifications and their regulation of mitochondrial and skeletal muscle function, Front. Physiol., 6, 347, 10.3389/fphys.2015.00347

Held, 2012, Regulatory control or oxidative damage? Proteomic approaches to interrogate the role of cysteine oxidation status in biological processes, Mol. Cell. Proteomics, 11, 10.1074/mcp.R111.013037

Chen, 2014, dbGSH: a database of S-glutathionylation, Bioinformatics, 30, 2386, 10.1093/bioinformatics/btu301

Chen, 2015, dbSNO 2.0: a resource for exploring structural environment, functional and disease association and regulatory network of protein S-nitrosylation, Nucleic Acids Res., 43, D503, 10.1093/nar/gku1176

Sun, 2012, RedoxDB-a curated database for experimentally verified protein oxidative modification, Bioinformatics, 28, 2551, 10.1093/bioinformatics/bts468

Duan, 2016, Quantitative profiling of protein S-glutathionylation reveals redox-dependent regulation of macrophage function during nanoparticle-induced oxidative stress, ACS Nano, 10, 524, 10.1021/acsnano.5b05524

Zhang, 2020, Oxidative stress and redox modifications in nanomaterial–cellular interactions, 127

Wojdyla, 2015, Differential alkylation-based redox proteomics - lessons learnt, Redox Biol., 6, 240, 10.1016/j.redox.2015.08.005

Murray, 2012, A twist on quantification measuring the site occupancy of S-nitrosylation, Circ. Res., 111, 1253, 10.1161/CIRCRESAHA.112.278721

Guo, 2014, Proteome-wide light/dark modulation of thiol oxidation in cyanobacteria revealed by quantitative site-specific redox proteomics, Mol. Cell. Proteomics, 13, 3270, 10.1074/mcp.M114.041160

Brandes, 2011, Using quantitative redox proteomics to dissect the yeast redoxome, J. Biol. Chem., 286, 41893, 10.1074/jbc.M111.296236

Brandes, 2013, Time line of redox events in aging postmitotic cells, Elife, 2, 10.7554/eLife.00306

Knoefler, 2012, Quantitative in vivo redox sensors uncover oxidative stress as an early event in life, Mol. Cell, 47, 767, 10.1016/j.molcel.2012.06.016

Menger, 2015, Fasting, but not aging, dramatically alters the redox status of cysteine residues on proteins in Drosophila melanogaster, Cell Rep., 11, 1856, 10.1016/j.celrep.2015.05.033

Rosenwasser, 2014, Mapping the diatom redox-sensitive proteome provides insight into response to nitrogen stress in the marine environment, Proc. Natl. Acad. Sci. U.S.A., 111, 2740, 10.1073/pnas.1319773111

Kramer, 2018, Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle, Redox Biol., 17, 367, 10.1016/j.redox.2018.05.011

Xiao, 2020, A quantitative tissue-specific landscape of protein redox regulation during aging, Cell, 180, 968, 10.1016/j.cell.2020.02.012

Behring, 2020, Spatial and temporal alterations in protein structure by EGF regulate cryptic cysteine oxidation, Sci. Signal., 13, 10.1126/scisignal.aay7315

Guo, 2014, Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications, Nat. Protoc., 9, 64, 10.1038/nprot.2013.161

Guo, 2014, Proteome-wide light/dark modulation of thiol oxidation in cyanobacteria revealed by quantitative site-specific redox proteomics, Mol. Cell. Proteomics, 13, 3270, 10.1074/mcp.M114.041160

Su, 2014, Proteomic identification and quantification of S-glutathionylation in mouse macrophages using resin-assisted enrichment and isobaric labeling, Free Radic. Biol. Med., 67, 460, 10.1016/j.freeradbiomed.2013.12.004

Kim, 2012, Redox regulation of MAPK phosphatase 1 controls monocyte migration and macrophage recruitment, Proc. Natl. Acad. Sci. U. S. A., 109, E2803, 10.1073/pnas.1212596109

Sakai, 2012, Reactive oxygen species-induced actin glutathionylation controls actin dynamics in neutrophils, Immunity, 37, 1037, 10.1016/j.immuni.2012.08.017

Ullevig, 2016, Protein S-glutathionylation mediates macrophage responses to metabolic cues from the extracellular environment, Antioxidants Redox Signal., 25, 836, 10.1089/ars.2015.6531

Guo, 2014, Proteome-wide light/dark modulation of thiol oxidation in cyanobacteria revealed by quantitative site-specific redox proteomics, Mol. Cell. Proteomics, 13, 3270, 10.1074/mcp.M114.041160

Kim, 2014, MS-GF plus makes progress towards a universal database search tool for proteomics, Nat. Commun., 5, 10.1038/ncomms6277

Kall, 2008, Assigning significance to peptides identified by tandem mass spectrometry using decoy databases, J. Proteome Res., 7, 29, 10.1021/pr700600n

Fan, 2004, Normalization and analysis of cDNA microarrays using within-array replications applied to neuroblastoma cell response to a cytokine, Proc. Natl. Acad. Sci. U.S.A., 101, 1135, 10.1073/pnas.0307557100

Huang, 2009, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc., 4, 44, 10.1038/nprot.2008.211

Lee, 2012, dbSNO: a database of cysteine S-nitrosylation, Bioinformatics, 28, 2293, 10.1093/bioinformatics/bts436

Olsson, 2011, PROPKA3: consistent treatment of internal and surface residues in empirical pK(a) predictions, J. Chem. Theor. Comput., 7, 525, 10.1021/ct100578z

Petersen, 2009, A generic method for assignment of reliability scores applied to solvent accessibility predictions, BMC Struct. Biol., 9, 10.1186/1472-6807-9-51

Meinken, 2015, MetazSecKB: the human and animal secretome and subcellular proteome knowledgebase, Database, 2015, 10.1093/database/bav077

Paulech, 2015, Global analysis of myocardial peptides containing cysteines with irreversible sulfinic and sulfonic acid post-translational modifications, Mol. Cell. Proteomics, 14, 609, 10.1074/mcp.M114.044347

Hansen, 2009, Quantifying the global cellular thiol-disulfide status, Proc. Natl. Acad. Sci. U.S.A., 106, 422, 10.1073/pnas.0812149106

Kyte, 1982, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol., 157, 105, 10.1016/0022-2836(82)90515-0

Ikai, 1980, Thermostability and aliphatic index of globular-proteins, J. Biochem., 88, 1895

Marino, 2011, Redox biology: computational approaches to the investigation of functional cysteine residues, Antioxidants Redox Signal., 15, 135, 10.1089/ars.2010.3561

Trivedi, 2009, The role of thiols and disulfides on protein stability, Curr. Protein Pept. Sci., 10, 614, 10.2174/138920309789630534

Weerapana, 2010, Quantitative reactivity profiling predicts functional cysteines in proteomes, Nature, 468, 10.1038/nature09472

Marino, 2010, Structural analysis of cysteine S-nitrosylation: a modified acid-based motif and the emerging role of trans-nitrosylation, J. Mol. Biol., 395, 844, 10.1016/j.jmb.2009.10.042

Gould, 2015, Site-specific proteomic mapping identifies selectively modified regulatory cysteine residues in functionally distinct protein networks, Chem. Biol., 22, 965, 10.1016/j.chembiol.2015.06.010

Woycechowsky, 2003, The CXC motif: a functional mimic of protein disulfide isomerase, Biochemistry, 42, 5387, 10.1021/bi026993q

Derewenda, 2009, Structure and function of Bacillus subtilis YphP, a prokaryotic disulfide isomerase with a CXC catalytic motif, Biochemistry, 48, 8664, 10.1021/bi900437z

Jones, 2010, Redox compartmentalization and cellular stress, Diabetes Obes. Metabol., 12, 116, 10.1111/j.1463-1326.2010.01266.x

Go, 2008, Redox compartmentalization in eukaryotic cells, Biochim. Biophys. Acta Gen. Subj., 1780, 1271, 10.1016/j.bbagen.2008.01.011

Go, 2010, Redox control systems in the nucleus: mechanisms and functions, Antioxidants Redox Signal., 13, 489, 10.1089/ars.2009.3021

Hwang, 1992, Oxidized redox state of glutathione in the endoplasmic-reticulum, Science, 257, 1496, 10.1126/science.1523409

Hu, 2008, The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix, J. Biol. Chem., 283, 29126, 10.1074/jbc.M803028200

Austin, 2005, Oxidizing potential of endosomes and lysosomes limits intracellular cleavage of disulfide-based antibody-drug conjugates, Proc. Natl. Acad. Sci. U.S.A., 102, 17987, 10.1073/pnas.0509035102

Kodali, 2015

Zhang, 2020, A proteome-wide assessment of the oxidative stress paradigm for metal and metal-oxide nanomaterials in human macrophages, NanoImpact, 17, 100194, 10.1016/j.impact.2019.100194

Holmstrom, 2014, Cellular mechanisms and physiological consequences of redox-dependent signalling, Nat. Rev. Mol. Cell Biol., 15, 411, 10.1038/nrm3801

Mesecke, 2008, A novel group of glutaredoxins in the cis-Golgi critical for oxidative stress resistance, Mol. Biol. Cell, 19, 2673, 10.1091/mbc.e07-09-0896

Mailloux, 2018, Mitochondrial antioxidants and the maintenance of cellular hydrogen peroxide levels, Oxid. Med. Cell Longev., 10.1155/2018/7857251

Rietsch, 1998, The genetics of disulfide bond metabolism, Annu. Rev. Genet., 32, 163, 10.1146/annurev.genet.32.1.163

Spector, 1979, Reaction mechanism and specificity of human GMP reductase. Substrates, inhibitors, activators, and inactivators, J. Biol. Chem., 254, 2308, 10.1016/S0021-9258(17)30222-3

Dunand-Sauthier, 2005, Stress-activated protein kinase pathway functions to support protein synthesis and translational adaptation in response to environmental stress in fission yeast, Eukaryot. Cell, 4, 1785, 10.1128/EC.4.11.1785-1793.2005

Shenton, 2006, Global translational responses to oxidative stress impact upon multiple levels of protein synthesis, J. Biol. Chem., 281, 29011, 10.1074/jbc.M601545200

Smirnova, 2005, Global gene expression profiling reveals widespread yet distinctive translational responses to different eukaryotic translation initiation factor 2B-targeting stress pathways, Mol. Cell Biol., 25, 9340, 10.1128/MCB.25.21.9340-9349.2005

Ibba, 2000, Aminoacyl-tRNA synthesis, Annu. Rev. Biochem., 69, 617, 10.1146/annurev.biochem.69.1.617

Martinez, 2009, Alternative activation of macrophages: an immunologic functional perspective, Annu. Rev. Immunol., 451, 10.1146/annurev.immunol.021908.132532

Fairweather, 2009, Alternatively activated macrophages in infection and autoimmunity, J. Autoimmun., 33, 222, 10.1016/j.jaut.2009.09.012

Mantovani, 2008, Cancer-related inflammation, Nature, 454, 436, 10.1038/nature07205

Brune, 2013, Redox control of inflammation in macrophages, Antioxidants Redox Signal., 19, 595, 10.1089/ars.2012.4785

Kekulandara, 2016, Clickable glutathione using tetrazine-alkene bioorthogonal chemistry for detecting protein glutathionylation, Org. Biomol. Chem., 14, 10886, 10.1039/C6OB02050J

Feng, 2015, Development of a clickable probe for profiling of protein glutathionylation in the central cellular metabolism of E. coli and Drosophila, Chem. Biol., 22, 1461, 10.1016/j.chembiol.2015.09.012

Campbell, 2019, Improving mitochondrial function with SS-31 reverses age-related redox stress and improves exercise tolerance in aged mice, Free Radic. Biol. Med., 134, 268, 10.1016/j.freeradbiomed.2018.12.031

Ezerina, 2014, Imaging dynamic redox processes with genetically encoded probes, J. Mol. Cell. Cardiol., 73, 43, 10.1016/j.yjmcc.2013.12.023

Gill, 2018, Protein S-glutathionylation lowers superoxide/hydrogen peroxide release from skeletal muscle mitochondria through modification of complex I and inhibition of pyruvate uptake, PloS One, 13, 10.1371/journal.pone.0192801

Mailloux, 2014, S-glutathionylation reactions in mitochondrial function and disease, Front. Cell Dev. Biol., 2, 68, 10.3389/fcell.2014.00068

Samarasinghe, 2016, A clickable glutathione approach for identification of protein glutathionylation in response to glucose metabolism, Mol. Biosyst., 12, 2471, 10.1039/C6MB00175K

O'Brien, 2017, Protein S-glutathionylation alters superoxide/hydrogen peroxide emission from pyruvate dehydrogenase complex, Free Radic. Biol. Med., 106, 302, 10.1016/j.freeradbiomed.2017.02.046