Stochastic simulation algorithm for isotope-based dynamic flux analysis
Tài liệu tham khảo
Allen, 2020, Tracing metabolic flux through time and space with isotope labeling experiments, Curr. Opin. Biotechnol., 64, 92, 10.1016/j.copbio.2019.11.003
Antoniewicz, 2015, Methods and advances in metabolic flux analysis: a mini-review, J. Ind. Microbiol. Biotechnol., 42, 317, 10.1007/s10295-015-1585-x
Antoniewicz, 2015, Parallel labeling experiments for pathway elucidation and 13c metabolic flux analysis, Curr. Opin. Biotechnol., 36, 91, 10.1016/j.copbio.2015.08.014
Antoniewicz, 2021, A guide to metabolic flux analysis in metabolic engineering: methods, tools and applications, Metab. Eng., 63, 2, 10.1016/j.ymben.2020.11.002
Antoniewicz, 2007, Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions, Metab. Eng., 9, 68, 10.1016/j.ymben.2006.09.001
Antoniewicz, 2007, Metabolic flux analysis in a nonstationary system: fed-batch fermentation of a high yielding strain of E. coli producing 1, 3-propanediol, Metab. Eng., 9, 277, 10.1016/j.ymben.2007.01.003
Baxter, 2007, Determination of metabolic fluxes in a non-steady-state system, Phytochemistry, 68, 2313, 10.1016/j.phytochem.2007.04.026
Bouzier-Sore, 2015, Uncertainties in pentose-phosphate pathway flux assessment underestimate its contribution to neuronal glucose consumption: relevance for neurodegeneration and aging, Front. Aging Neurosci., 7, 89, 10.3389/fnagi.2015.00089
Creek, 2015, Probing the metabolic network in bloodstream-form trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose, PLoS Pathog., 11, 10.1371/journal.ppat.1004689
Crown, 2013, Parallel labeling experiments and metabolic flux analysis: past, present and future methodologies, Metab. Eng., 16, 21, 10.1016/j.ymben.2012.11.010
Diaz-Moralli, 2016, A key role for transketolase-like 1 in tumor metabolic reprogramming, Oncotarget, 7, 10.18632/oncotarget.10429
Dong, 2019, Dissecting mammalian cell metabolism through 13C-and 2H-isotope tracing: interpretations at the molecular and systems levels, Ind. Eng. Chem. Res., 59, 2593, 10.1021/acs.iecr.9b05154
Gibson, 2000, Efficient exact stochastic simulation of chemical systems with many species and many channels, J. Phys. Chem. A, 104, 1876, 10.1021/jp993732q
Gillespie, 1977, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 2340, 10.1021/j100540a008
Gillespie, 1992, A rigorous derivation of the chemical master equation, Phys. Stat. Mech. Appl., 188, 404, 10.1016/0378-4371(92)90283-V
Gillespie, 2000, The chemical Langevin equation, J. Chem. Phys., 113, 297, 10.1063/1.481811
Gillespie, 2001, Approximate accelerated stochastic simulation of chemically reacting systems, J. Chem. Phys., 115, 1716, 10.1063/1.1378322
Hartline, 2021, Dynamic control in metabolic engineering: theories, tools, and applications, Metab. Eng., 63, 126, 10.1016/j.ymben.2020.08.015
Heinonen, 2019, Bayesian metabolic flux analysis reveals intracellular flux couplings, Bioinformatics, 35, i548, 10.1093/bioinformatics/btz315
Hurbain, 2022, Quantitative modeling of pentose phosphate pathway response to oxidative stress reveals a cooperative regulatory strategy, iScience, 25, 104681, 10.1016/j.isci.2022.104681
Jacobson, 2019, 2H and 13C metabolic flux analysis elucidates in vivo thermodynamics of the ed pathway in zymomonas mobilis, Metab. Eng., 54, 301, 10.1016/j.ymben.2019.05.006
Kuehne, 2015, Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells, Mol. Cell, 59, 359, 10.1016/j.molcel.2015.06.017
Lee, 2019, Assessing the pentose phosphate pathway using [2, 3-13c2] glucose, NMR Biomed., 32, 10.1002/nbm.4096
Leighty, 2011, Dynamic metabolic flux analysis (DMFA): a framework for determining fluxes at metabolic non-steady state, Metab. Eng., 13, 745, 10.1016/j.ymben.2011.09.010
Lewis, 2014, Tracing compartmentalized nadph metabolism in the cytosol and mitochondria of mammalian cells, Mol. Cell, 55, 253, 10.1016/j.molcel.2014.05.008
Mangan, 2017, Model selection for dynamical systems via sparse regression and information criteria, Proc. Math. Phys. Eng. Sci., 473
Metallo, 2009, Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells, J. Biotechnol., 144, 167, 10.1016/j.jbiotec.2009.07.010
Niedenführ, 2015, How to measure metabolic fluxes: a taxonomic guide for 13c fluxomics, Curr. Opin. Biotechnol., 34, 82, 10.1016/j.copbio.2014.12.003
Ohno, 2020, Kinetic trans-omic analysis reveals key regulatory mechanisms for insulin-regulated glucose metabolism in adipocytes, iScience, 23, 10.1016/j.isci.2020.101479
Quek, 2020, Dynamic 13C flux analysis captures the reorganization of adipocyte glucose metabolism in response to insulin, iScience, 23, 10.1016/j.isci.2020.101786
Schmidt, 1997, Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices, Biotechnol. Bioeng., 55, 831, 10.1002/(SICI)1097-0290(19970920)55:6<831::AID-BIT2>3.0.CO;2-H
Schumacher, 2015, Effective estimation of dynamic metabolic fluxes using 13c labeling and piecewise affine approximation: from theory to practical applicability, Metabolites, 5, 697, 10.3390/metabo5040697
Selivanov, 2004, An optimized algorithm for flux estimation from isotopomer distribution in glucose metabolites, Bioinformatics, 20, 3387, 10.1093/bioinformatics/bth412
Stephanopoulos, 1999, Metabolic fluxes and metabolic engineering, Metab. Eng., 1, 1, 10.1006/mben.1998.0101
Theorell, 2017, To be certain about the uncertainty: bayesian statistics for 13c metabolic flux analysis, Biotechnol. Bioeng., 114, 2668, 10.1002/bit.26379
Theorell, 2020, Reversible jump MCMC for multi-model inference in metabolic flux analysis, Bioinformatics, 36, 232, 10.1093/bioinformatics/btz500
Thompson, 2002
Valderrama-Bahamóndez, 2019, Mcmc techniques for parameter estimation of ode based models in systems biology, Front. Appl. Math. Stat., 5, 55, 10.3389/fams.2019.00055
Van Kampen, 1992, vol. 1
Wahl, 2008, 13 c labeling experiments at metabolic nonstationary conditions: an exploratory study, BMC Bioinf., 9, 1, 10.1186/1471-2105-9-152
Young, 2014, INCA: a computational platform for isotopically non-stationary metabolic flux analysis, Bioinformatics, 30, 1333, 10.1093/bioinformatics/btu015
Young, 2008, An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis, Biotechnol. Bioeng., 99, 686, 10.1002/bit.21632
Zupke, 1994, Modeling of isotope distributions and intracellular fluxes in metabolic networks using atom mapping matrixes, Biotechnol. Prog., 10, 489, 10.1021/bp00029a006