Stochastic optimal transport revisited
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ambrosio, L.: Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158, 227–260 (2004)
Ambrosio, L., Trevisan, D.: Well-posedness of Lagrangian flows and continuity equations in metric measure spaces. Anal. PDE 7(5), 1179–1234 (2014)
Aronson, D.G.: Bounds on the fundamental solution of a parabolic equation. Bull. Am. Math. Soc. 73, 890–896 (1967)
Bogachev, V.I., Krylov, N.V., Röckner, M.: Elliptic and parabolic equations for measures. Russ. Math. Surv. 64(6), 973–1078 (2009)
Bogachev, V. I., Röckner, M., Shaposhnikov, S. V.: On the Ambrosio–Figalli–Trevisan superposition principle for probability solutions to Fokker–Planck–Kolmogorov equations. J. Dyn. Differ. Equ. (2020)
Cacoullos, T., Papathanasiou, V., Utev, S.A.: Another characterization of the normal law and a proof of the central limit theorem connected with it. Theory Probab. Appl. 37, 581–588 (1992)
Cacoullos, T., Papathanasiou, V., Utev, S.A.: Variational inequalities with examples and an application to the central limit theorem. Ann. Probab. 22, 1607–1618 (1994)
Carlen, E. A.: Existence and sample path properties of the diffusions in Nelson’s stochastic mechanics. In: Albeverio, S., Blanchard, Ph., Streit, L. (eds.) Stochastic processes-Mathematics and Physics, Bielefeld 1984, Lecture Notes in Math., Vol. 1158, pp. 25-51. Springer, Heidelberg (1986)
Carmona, R.: Probabilistic construction of Nelson processes. In: Itô, K., Ikeda, N. (eds.) Proc. Probabilistic Methods in Mathematical Physics, Katata 1985, pp. 55–81. Kinokuniya, Tokyo (1987)
Cattiaux, P., Léonard, C.: Minimization of the Kullback information of diffusion processes. Ann. Inst. H Poincaré Probab. Stat. 30, 83–132 (1994)
Cattiaux, P., Léonard, C.: Correction to: Minimization of the Kullback information of diffusion processes [Ann. Inst. H. Poincaré Probab. Statist. 30 (1994), no. 1, 83–132]. Ann Inst H Poincaré Probab Statist 31, 705–707 (1995)
Cattiaux, P., Léonard, C.: Minimization of the Kullback information for some Markov processes. In: Azema, J. et al. (eds.) Séminaire de Probabilités, XXX, Lecture Notes in Math., Vol. 1626, pp. 288–311. Springer, Heidelberg (1996)
Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)
Dai Pra, P.: A stochastic control approach to reciprocal diffusion processes. Appl. Math. Optim. 23, 313–329 (1991)
Dall’Aglio, G.: Sugli estremi dei momenti delle funzioni di ripartizione doppie. Ann. Scuola Normale Superiore Di Pisa, Cl. Sci. 3(1), 33–74 (1956)
Dupuis, P., Ellis, R.S.: A Weak Convergence Approach to the Theory of Large Deviations. John Wiley & Sons, New York (1997)
Figalli, A.: Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients. J. Funct. Anal. 254, 109–153 (2008)
Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions. Springer, New York (1993)
Föllmer, H.: Random fields and diffusion processes. In: Hennequin, PL (ed.) École d’Été de Probabilités de Saint-Flour XV–XVII, 1985–87, Lecture Notes in Math., Vol. 1362, pp. 101–203. Springer, Heidelberg (1988)
Friedman, A.: Partial Differential Equations of Parabolic Type. Dover Publications, New York (2013)
Gomes, D. A., Mitake, H, Tran, H. V.: The large time profile for Hamilton–Jacobi–Bellman equations. arXiv:2006.04785
Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland/Kodansha, Tokyo (1981)
Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems. North-Holland, Amsterdam (1979)
Koike, S.: A beginner’s guide to the theory of viscosity solutions. MSJ Memoirs, Vol. 13. Math. Soc. Japan., Tokyo (2004)
Léonard, C. : A survey of the Schrödinger problem and some of its connections with optimal transport. Special Issue on Optimal Transport and Applications. Discr. Contin. Dyn. Syst. 34, 1533–1574 (2014)
Mikami, T.: Variational processes from the weak forward equation. Commun. Math. Phys. 135, 19–40 (1990)
Mikami, T.: Equivalent conditions on the central limit theorem for a sequence of probability measures on $$\mathbb{R}$$. Stat. Probab. Lett. 37, 237–242 (1998)
Mikami, T.: Markov marginal problems and their applications to Markov optimal control. In: McEneaney, W. M. etal. (eds.) Stochastic Analysis, Control, Optimization and Applications, A Volume in Honor of W. H. Fleming, pp. 457-476. Birkhäuser, Boston (1999)
Mikami, T.: Dynamical systems in the variational formulation of the Fokker–Planck equation by the Wasserstein metric. Appl. Math. Optim. 42, 203–227 (2000)
Mikami, T.: Optimal control for absolutely continuous stochastic processes and the mass transportation problem. Elect. Commun. Probab. 7, 199–213 (2002)
Mikami, T.: Monge’s problem with a quadratic cost by the zero-noise limit of $$h$$-path processes. Probab. Theory Related Fields 129, 245–260 (2004)
Mikami, T.: Covariance kernel and the central limit theorem in the total variation distance. J. Multivar. Anal. 90, 257–268 (2004)
Mikami, T.: Marginal problem for semimartingales via duality. In: Giga, Y., Ishii, K., Koike, S. et al. (eds) International Conference for the 25th Anniversary of Viscosity Solutions, Gakuto International Series. Mathematical Sciences and Applications 30, pp. 133–152. Gakkotosho, Tokyo (2008)
Mikami, T.: Regularity of Schrödinger’s functional equation and mean field PDEs for h-path processes. Osaka J. Math. 56, 831–842 (2019)
Mikami, T.: Regularity of Schrödinger’s functional equation in the weak topology and moment measures. J. Math. Soc. Jpn. 73, 99–123 (2021)
Mikami, T.: Stochastic optimal transportation. A book in preparation
Mikami, T., Thieullen, M.: Duality theorem for stochastic optimal control problem. Stoc. Proc. Appl. 116, 1815–1835 (2006)
Nagasawa, M.: Transformations of diffusion and Schrödinger process. Probab. Theory Related Fields 82, 109–136 (1989)
Nagasawa, M.: Stochastic Processes in Quantum Physics (Monographs in Mathematics 94). Birkhaüser, Basel (2000)
Nelsen, R.B.: An Introduction to Copulas, 2nd edn. Springer, Heidelberg (2006)
Nelson, E.: Quantum Fluctuations. Princeton University Press, Princeton (1984)
Rachev, S. T., Rüschendorf, L.: Mass transportation problems, Vol. I: Theory, Vol. II: Application. Springer, Heidelberg (1998)
Röckner, M., Xie, L., Zhang, X.: Superposition principle for non-local Fokker-Planck operators. Probab. Theory Related Fields 178, 699–733 (2020)
Rüschendorf, L., Thomsen, W.: Note on the Schrödinger equation and $$I$$-projections. Statist. Probab. Lett. 17, 369–375 (1993)
Santambrogio, F.: Dealing with moment measures via entropy and optimal transport. J. Funct. Anal. 271, 418–436 (2016)
Schrödinger, E.: Ueber die Umkehrung der Naturgesetze. Sitz. Ber. der Preuss. Akad. Wissen., Berlin, Phys. Math. pp. 144–153 (1931)
Schrödinger, E.: Théorie relativiste de l’electron et l’interprétation de la mécanique quantique. Ann. Inst. H. Poincaré 2, 269–310 (1932)
Schweizer, B., Sklar, A.: Probabilistic Metric Space. Dover Publications, New York (2005)
Sheu, S.J.: Some estimates of the transition density of a nondegenerate diffusion Markov processes. Ann. Probab. 19, 538–561 (1991)
Tan, X., Touzi, N.: Optimal transportation under controlled stochastic dynamics. Ann. Probab. 41, 3201–3240 (2013)
Trevisan, D.: Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients. Electron J. Probab. 21, 1–41 (2016)
Villani, C.: Topics in Optimal Transportation. American Mathematics Society, Providence, RI (2003)
Zambrini, J. C.: Variational processes. In: Albeverio, S. etal. (eds.) Stochastic processes in classical and quantum systems, Ascona 1985, Lecture Notes in Phys., Vol. 262., pp. 517–529. Springer, Heidelberg (1986)
Zheng, W.A.: Tightness results for laws of diffusion processes application to stochastic mechanics. Ann. Inst. Henri Poincaré 21, 103–124 (1985)