Stochastic online optimization. Single-point and multi-point non-linear multi-armed bandits. Convex and strongly-convex case

Automation and Remote Control - Tập 78 Số 2 - Trang 224-234 - 2017
Alexander Gasnikov1,2, Ekaterina Krymova1, Anastasia Lagunovskaya3,2, Ilnura Usmanova1,2, Fedor Fedorenko2
1Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
2Moscow Institute of Physics and Technology (State University), Moscow, Russia
3Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Gasnikov, A.V., Lagunovskaya, A.A., Usmanova, I.N., and Fedorenko, F.A., Gradient-Free Proximal Methods with Inexact Oracle for Convex Stochastic Nonsmooth Optimization Problems on the Simplex, Autom. Remote Control, 2016, vol. 77, no. 11, pp. 2018–2034.

Lugosi, G. and Cesa-Bianchi, N., Prediction, Learning and Games, New York: Cambridge Univ. Press, 2006.

Agarwal, A., Dekel, O., and Xiao, L., Optimal Algorithm for Online Convex Optimization with Multi- Point Bandit Feedback, COLT, Proc. 23rd Ann. Conf. on Learning Theory, Haifa, 2010, pp. 28–40.

Sridharan, K., Learning from an Optimization Viewpoint, PhD Dissertation, Toyota Technol. Inst. Chicago, 2011, arXiv:1204.4145.

Bubeck, S., Introduction to Online Optimization, Princeton: Princeton Univ., 2011. http://www. princeton.edu/~sbubeck/BubeckLectureNotes.pdf.

Shalev-Shwartz, S., Online Learning and Online Convex Optimization, Foundat. Trends Machine Learning, 2011, vol. 4, no. 2, pp. 107–194. http://www.cs.huji.ac.il/~shais/papers/OLsurvey.

Bubeck, S. and Cesa-Bianchi, N., Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Foundat. Trends Machine Learning, 2012, vol. 5, no. 1, pp. 1–122. http://www.princeton. edu/~sbubeck/SurveyBCB12.pdf.

Rakhlin, A. and Sridharan, K., Statistical Learning Theory and Sequential Prediction, e-print, 2014. http://stat.wharton.upenn.edu/~rakhlin/book draft.pdf.

Hazan, E., Introduction to Online Convex Optimization, e-print, 2015. http://ocobook.cs.princeton.edu/OCObook.pdf.

Gasnikov, A.V., Nesterov, Yu.E., and Spokoinyi, V.G., On Efficiency of One Method for Randomization of the Mirror Descent in the Problems of Online Optimization, Zh. Vychisl. Mat. Mat. Fiz., 2015, vol. 55, no. 4, pp. 55–71.

Duchi, J.C., Jordan, M.I., Wainwright, M.J., and Wibisono, A., Optimal Rates for Zero-order Convex Optimization: The Power of Two Function Evaluations, IEEE Transact. Inform., 2015, vol. 61, no. 5, pp. 2788–2806. http://www.eecs.berkeley.edu/~wainwrig/Papers/DucZero15.pdf.

Nemirovskii, A.S. and Yudin, D.B., Slozhnost’ zadach i effektivnost’ metodov optimizatsii (Complexity of Problems and Efficiency of the Optimization Methods), Moscow: Nauka, 1979.

Flaxman, A.D., Kalai, A.T., and McCahan, H.B., Online Convex Optimization in the Bandit Setting: Gradient Descent without a Gradient, Proc. 16 Annual ACM-SIAM Sympos. Discret. Algorithm., 2005, pp. 385–394. http://research.microsoft.com/en-us/um/people/adum/publications/2005-Online_Convex_Optimization_in_the_Bandit_Setting.pdf.

Juditsky, A. and Nemirovski, A., First Order Methods for Nonsmooth Convex Large-scale Optimization. I, II, in Optimization for Machine Learning, Sra, S., Nowozin, S., and Wright, S., Eds., Boston: MIT Press, 2012.

Gasnikov, A.V., Dvurechenskii, P.E., and Nesterov, Yu.E., Stochastic Gradient Methods with Inaccurate Oracle, Tr. MFTI, 2016, vol. 8, no, 1. pp. 41–91.

Nemirovski, A., Lectures on Modern Convex Optimization Analysis, Algorithms, and Engineering Applications, Philadelphia: SIAM, 2013. http://www2.isye.gatech.edu/~nemirovs/Lect ModConvOpt.pdf.

Agarwal, A., Bartlett, P.L., Ravikumar, P., and Wainwright, M.J., Information-theoretic Lower Bounds on the Oracle Complexity of Stochastic Convex Optimization, IEEE Transact. Inform., 2012, vol. 58, no. 5, pp. 3235–3249, arXiv:1009.0571.

Bubeck, S. and Eldan, R., Multi-Scale Exploration of Convex Functions and Bandit Convex Optimization, e-print, 2015. http://research.microsoft.com/en-us/um/people/sebubeck/ConvexBandits.pdf.

Allen-Zhu, Z. and Orecchia, L., Linear Coupling: An Ultimate Unification of Gradient and Mirror Descent, e-print, 2014, arXiv:1407.1537.

Nesterov, Y., Primal-Dual Subgradient Methods for Convex Problems, Math. Program., Ser. B, 2009, vol. 120(1), pp. 261–283.

Ledoux, M., Concentration of Measure Phenomenon, Providence: Am. Math. Soc. (Math. Surveys Monogr., vol. 89), 2001.