Stochastic model for the fluctuation-limited reaction–diffusion kinetics in inhomogeneous media based on the nonlinear Smoluchowski equations

Journal of Mathematical Chemistry - Tập 53 Số 2 - Trang 651-669 - 2015
Karl K. Sabelfeld1, Oliver Brandt2, Vladimir M. Kaganer2
1Institute of Computational Mathematics and Mathematical Geophysics, Russian Academy of Sciences, Novosibirsk, Russia
2Paul-Drude-Institut für Festkörperelektronik, Berlin, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

R. Balescu, Dynamical correlation patterns: a new representation of the Liouville equation. Physica 56, 1–24 (1971)

M. Bramson, J.L. Lebowitz, Asymptotic behavior of densities for two-particle annihilating random walks. J. Stat. Phys. 62, 297–372 (1991)

O. Brandt, K.H. Ploog, Solid state lighting: the benefits of disorder. Nat. Mater. 5, 769–770 (2006)

C.-N. Brosseau, M. Perrin, C. Silva, Carrier recombination dynamics in In $$_x$$ x Ga $$_{1-x}$$ 1 - x N/GaN multiple quantum wells. Phys. Rev. B 82, 085305 (2010)

M.A. Caro, S. Schulz, E.P. OReilly, Theory of local electric polarization and its relation to internal strain: impact on polarization potential and electronic properties of group-III nitrides. Phys. Rev. B 88, 214103 (2013)

A. Donev, V.V. Bulatov, T. Oppelstrup, G.H. Gilmer, B. Sadigh, Malvin H. Kalos, A first-passage kinetic Monte Carlo algorithm for complex diffusion–reaction systems. J. Comp. Phys. 229, 3214–3236 (2010)

A.B. Doktorov, E.A. Kotomin, Theory of tunneling recombination of defects stimulated by their motion. Phys. Stat. Sol. 114(9), 9–34 (1982)

S. Hammersley, D. Watson-Parris, P. Dawson, M.J. Godfrey, T.J. Badcock, M.J. Kappers, C. McAleese, R.A. Oliver, C.J. Humphreys, The consequences of high injected carrier densities on carrier localization and efficiency droop in InGaN/GaN quantum well structures. J. Appl. Phys. 111, 083512 (2012)

K.M. Hong, J. Noolandi, R.A. Street, Theory of radiative recombination by diffusion and tunneling in amorphous Si:H. Phys. Rev. B 23, 2967–2976 (1981)

D.J. Huntley, An explanation of the power-law decay of luminescence. J. Phys. Condens. Matter 18, 1359–1365 (2006)

A.K. Jonscher, A. de Polignac, The time dependence of luminescence in solids. J. Phys. C Solid State Phys. 17, 6493–6519 (1984)

D.A. Kessler, H. Levine, Fluctuation-induced diffusive instabilities. Nature 394, 556 (1988)

J.G. Kirkwood, Statistical mechanics of fluid mixtures. J. Chem. Phys. 3, 300 (1935)

A.A. Kolodko, K.K. Sabelfeld, Stochastic Lagrangian model for spatially inhomogeneous Smoluchowski equation governing coagulating and diffusing particles. Monte Carlo Methods Appl. 7(3–4), 223–228 (2001)

A. Kolodko, K. Sabelfeld, W. Wagner, A stochastic method for solving Smoluchowski’s coagulation equation. Math. Comput. Simul. 49(1–2), 57–79 (1999)

E. Kotomin, V. Kuzovkov, Modern aspects of diffusion-controlled reactions. Cooperative phenomena in bimolecular processes. In Chemical Kinetics Series, vol. 34 (Elsevier, Amsterdam, 1996), p. 612

F. Leyvraz, S. Redner, Spatial structure in diffusion-limited two-species annihilation. Phys. Rev. A 46(6), 3132–3147 (1992)

T.S. Lundgren, A closure hypothesis for the hierarchy of equations for turbulent probability distribution functions. Stat. Models Turbul. Lect. Notes Phys. 12, 70–100 (1972)

A. Morel, P. Lefebvre, S. Kalliakos, T. Taliercio, T. Bretagnon, B. Gil, Donor-acceptor-like behavior of electron-hole pair recombinations in low-dimensional (Ga, In)N/GaN systems. Phys. Rev. B 68, 045331 (2003)

T. Opplestrup, V.V. Bulatov, G.H. Gilmer, M.H. Kalos, B. Sadigh, First-passage Monte Carlo algorithm: diffusion without all the hops. Phys. Rev. Lett. 97, 230602 (2006)

A.A. Ovchinnikov, Y.B. Zeldovich, Role of density fluctuations in bimolecular reaction kinetics. Chem. Phys. 28, 215–218 (1978)

S. Redner, A Guide to First-Passage Processes (Cambridge University Press, Cambridge, 2001)

K.K. Sabelfeld, Monte Carlo Methods in Boundary Value Problems (Springer, New York, 1991)

K.K. Sabelfeld, S.V. Rogasinsky, A.A. Kolodko, A.I. Levykin, Stochastic algorithms for solving Smolouchovsky coagulation equation and applications to aerosol growth simulation. Monte Carlo Methods Appl. 2(1), 41–87 (1996)

K.K. Sabelfeld, Stochastic algorithms for solving Smolouchovsky coagulation equation. In Stochastic Simulation, ed. by S.O. Kyoto, K. Sabelfeld (1997), pp. 80–105

K.K. Sabelfeld, A.A. Kolodko, Stochastic Lagrangian models and algorithms for spatially inhomogeneous Smoluchowski equation. Math. Comput. Simul. 61, 115–137 (2003)

K. Sabelfeld, N. Mozartova, Sparsified randomization algorithms for large systems of linear equations and a new version of the random walk on boundary method. Monte Carlo Methods Appl. 15(3), 257–284 (2009)

R.T. Sibatov, V.V. Uchaikin, Fractional differential approach to dispersive transport in semiconductors. Physics-Uspekhi 52(10), 1019–1043 (2009)

M. Smoluchowski, Drei Vorträge uber Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen. Physik. Z. 17, 557–571, ibid. 585–599 (1916)

H.E. Stanley, N. Ostrowsky (eds.), Random Fluctuations and Pattern Growth: Experiments and Models, vol. 157. Proceedings of the NATO Advanced Study Institute, Cargese, Corsica, France, 18–31 July 1988, Series: Nato Science Series E (closed), 1988, p. 368

D.G. Thomas, J.J. Hopfield, W.M. Augustyniak, Kinetics of radiative recombination at randomly distributed donors and acceptors. Phys. Rev. 140, A202–A220 (1965)

D. Watson-Parris, M.J. Godfrey, P. Dawson, R.A. Oliver, M.J. Galtrey, M.J. Kappers, C.J. Humphreys, Carrier localization mechanisms in In $$_{x}$$ x Ga $$_{1-x}$$ 1 - x N/GaN quantum wells. Phys. Rev. B 83, 115321 (2011)

M.M.R. Williams, S.K. Loyalka, Aerosol Science. Theory and Practice (Pergamon, New York, 1991)