Stochastic gradient algorithm of the iterative penalty method solving the maximin problem with coupled constraints
Tài liệu tham khảo
Yu. B. Germeier, Games with Nonantagonistic Interests [in Russian], Nauka, Moscow (1976).
V. A. Gorelik and A. F. Kononenko, Game-Theoretical Models of Decision Making in Ecological-Economic Systems [in Russian], Radio i Svyaz’, Moscow (1982).
V. V. Fedorov, "Regularity conditions and necessary conditions of maximin with coupled variables," Zh. Vychisl. Mat. Mat. Fiz.,17, No. 1, 79–90 (1977).
D. A. Molodtsov and V. V. Fedorov, "Stability of optimality principles," in: State of the Art in Operations Research Theory [in Russian], Nauka, Moscow (1979).
E. R. Avakov, "On conditions of approximation of maximin problems by coupled sets," Zh. Vychisl. Mat. Mat. Fiz.,18, No. 3, 603–613 (1978).
E. R. Avakov, "On conditions of approximation of a multiple maximin by coupled sets," Vestn. Mosk. Gos. Univ., Ser. 15, Vychisl. Mat. Kiber., No. 2, 16–25 (1979).
V. F. Dem'yanov, Minimax: Directional Differentiability [in Russian], Leningrad State Univ. (1974).
O. F. Borisenko and L. I. Minchenko, "On directional differentiability of the maximum function," Zh. Vychisl. Mat. Mat. Fiz.,23, No. 3, 567–575 (1983).
L. I. Minchenko, "Differential properties of the maximum functions with coupled constraints," Zh. Vychisl. Mat. Mat. Fiz.,24, No. 2, 210–217 (1984).
A. M. Rubinov, "Conjugate derivative of a multivalued mapping and differentiability of maximum with coupled constraints," Sib. Mat. Zh.,26, No. 3, 147–155 (1985).
E. A. Nurminskii, Numerical Methods of Solution of Deterministic and Stochastic Minimax Problems [in Russian], Naukova Dumka, Kiev (1979).
V. I. Norkin, Generalized-Gradient Method in Nonconvex Nonsmooth Optimization [in Russian], Thesis, Kiev (1983).
Yu. B. Germeier, "Approximate reduction by penalty functions of the maximin problem to the maximum problem," Zh. Vychisl. Mat. Mat. Fiz.,9, No. 3, 730–731 (1969).
V. A. Gorelik, "Approximate determination of maximins with variable-coupling constraints," Zh. Vychisl. Mat. Mat. Fiz.,12, No. 2, 510–517 (1972).
V. V. Fedorov, Numerical Maximin Methods [in Russian], Nauka, Moscow (1979).
N. M. Novikova, "Penalty method in the maximin problem with coupled variables," in: Mathematical Methods in Operations Research [in Russian], Moscow State Univ. (1981).
Yu. M. Ermol'ev, Stochastic Programming Methods [in Russian], Nauka, Moscow (1976).
N. M. Novikova, "Stochastic quasigradient maximin-seeking method," Zh. Vychisl. Mat. Mat. Fiz.,17, No. 1, 91–99 (1977).
S. K. Zavriev, "Mixed penalty and stochastic gradient maximin-seeking method," Zh. Vychisl. Mat. Mat. Fiz.,19, No. 2, 329–342 (1979).
S. K. Zavriev, "Finding the stationary points in the constrained maximin-seeking problem," Vestn. Mosk. Gos. Univ., Ser. 15, Vychisl. Mat. Kiber., No. 2, 48–57 (1980).
S. K. Zavriev, Stochastic Gradient Algorithms for Solving Minimax Problems [in Russian], Thesis, Moscow (1981).
F. P. Vasil'ev, Methods of Solution of Extremal Problems [in Russian], Nauka, Moscow (1981).
A. B. Bakushinskii, Iterative Regularization Principle [in Russian], Thesis, Moscow (1984).
D. V. Surnachev, Investigation of Robustness of Optimization Methods Using Linear and Quadratic Search [in Russian], Thesis (1985).
S. K. Zavriev, Stochastic Gradient Methods for Solving Minimax Problems [in Russian], Moscow State Univ. (1984).
N. Rouche, P. Habets, and M. LaLoy, Stability Theory by Liapunov's Direct Methods, Springer, New York (1977).
K. Kuratowski, Topology, Vol. 1, Mir, Moscow (1966).
K. Kuratowski, Topology, Vol. 2, Mir, Moscow (1969).
P. S. Aleksandrov, Introduction to Set Theory and General Topology [in Russian], Nauka, Moscow (1977).
P. S. Alexsandrov and A. N. Kolmogorov, Introduction to Set Theory and Function Theory [in Russian], Gostekhizdat, Moscow-Leningrad (1948).
S. K. Zavriev, in: All-Union School-Seminar on Optimization and Its Applications in Economics, Tezisy Dokladov [in Russian], Ashkhbad (1984), pp. 65–66.
J. Neve, Mathematical Foundations of Probability Theory [Russian translation], Mir, Moscow (1969).