Stochastic dominance relations for generalised parametric distributions obtained through composition

Springer Science and Business Media LLC - Tập 78 - Trang 297-311 - 2020
Tommaso Lando1,2, Lucio Bertoli-Barsotti1
1University of Bergamo, Bergamo, Italy
2VŠB-TU Ostrava Ostrava Czech Republic

Tóm tắt

Investigating stochastic dominance within flexible multi-parametric families of distributions is often complicated, owing to the high number of parameters or non-closed functional forms. To simplify the problem, we use the T–X method, making it possible to obtain generalised models through the composition of cumulative distributions and quantile functions. We derive conditions for the second-order stochastic dominance and for the increasing convex order within multi-parametric families in two steps, namely: (i) breaking them down via the T–X approach and (ii) checking dominance conditions of the (more) manageable distributions composing the model. We apply our method to some special distributions and focus on the beta-generated family, which enables the comparisons of order statistics of i.i.d. samples from (possibly) different random variables.

Tài liệu tham khảo

Alexander, C., Cordeiro, G.M., Ortega, E.M., Sarabia, J.M.: Generalized beta-generated distributions. Comput. Stat. Data Anal. 56(6), 1880–1897 (2012) Aljarrah, M.A., Lee, C., Famoye, F.: On generating TX family of distributions using quantile functions. J. Stat. Distrib. Appl. 1(1), 2 (2014) Aljarrah, M.A., Famoye, F., Lee, C.: A new Weibull–Pareto distribution. Commun. Stat. Theory Methods 44(19), 4077–4095 (2015) Alzaatreh, A., Famoye, F., Lee, C.: Weibull–Pareto distribution and its applications. Commun. Stat. Theory Methods 42(9), 1673–1691 (2013a) Alzaatreh, A., Lee, C., Famoye, F.: A new method for generating families of continuous distributions. Metron 71(1), 63–79 (2013b) Alzaatreh, A., Famoye, F., Lee, C.: The gamma-normal distribution: Properties and applications. Comput. Stat. Data Anal. 69, 67–80 (2014a) Alzaatreh, A., Lee, C., Famoye, F.: T-normal family of distributions: a new approach to generalize the normal distribution. J. Stat. Distrib. Appl. 1(1), 16 (2014b) Alzaghal, A., Famoye, F., Lee, C.: Exponentiated \( t \)-\( x \) family of distributions with some applications. Int. J. Stat. Prob. 2(3), 31 (2013) Arnold, B.C., Villaseñor, J.A.: Lorenz ordering of order statistics. Stochastic orders and decision under risk IMS Lecture Notes-Monograph Series 38–47 (1991) Bagnoli, M., Bergstrom, T.: Log-concave probability and its applications. Econ. Theor. 26(2), 445–469 (2005) Belzunce, F., Martinez-Riquelme, C., Ruiz, J.M.: On sufficient conditions for mean residual life and related orders. Comput. Stat. Data Anal. 61, 199–210 (2013a) Belzunce, F., Pinar, J.F., Ruiz, J.M., Sordo, M.A.: Comparison of concentration for several families of income distributions. Stat. Prob. Lett. 83(4), 1036–1045 (2013b) Chan, W., Proschan, F., Sethuraman, J.: Convex-ordering among functions, with applications to reliability and mathematical statistics. Lecture Notes-Monograph Series 121–134 (1990) Cordeiro, G.M., Ortega, E.M., Popović, B.V., Pescim, R.R.: The Lomax generator of distributions: Properties, minification process and regression model. Appl. Math. Comput. 247, 465–486 (2014) Dias, C.R., Cordeiro, G.M., Alizadeh, M., Marinho, P.R.D., Coêlho, H.F.C.: Exponentiated Marshall–Olkin family of distributions. J. Stat. Distrib. Appl. 3(1), 15 (2016) Fishburn, P.C.: Stochastic dominance and moments of distributions. Math. Oper. Res. 5(1), 94–100 (1980) Hanoch, G., Levy, H.: The efficiency analysis of choices involving risk. Rev. Econ. Stud. 36(3), 335–346 (1969) Huang, R.J., Tzeng, L.Y., Zhao, L.: Fractional degree stochastic dominance. Management Science (2020) Jones, M.: Families of distributions arising from distributions of order statistics. Test 13(1), 1–43 (2004) Karlin, S., Novikoff, A.: Generalized convex inequalities. Pac. J. Math. 13(4), 1251–1279 (1963) Kleiber, C.: On the Lorenz order within parametric families of income distributions. Sankhyā: Indian J. Stat. Series B 514–517 (1999) Kleiber, C., Kotz, S.: Statistical size distributions in economics and actuarial sciences. Wiley Series in Probability and Statistics (2003) Kochar, S.: Lorenz ordering of order statistics. Stat. Prob. Lett. 76(17), 1855–1860 (2006) Kochar, S.: Stochastic comparisons of order statistics and spacings: a review. ISRN Probability and Statistics 2012, (2012) Lando, T., Bertoli-Barsotti, L.: Distorted stochastic dominance: a generalized family of stochastic orders. J. Math. Econ. 90, 132–139 (2020). https://doi.org/10.1016/j.jmateco.2020.07.005 Lando, T., Bertoli-Barsotti, L.: Second-order stochastic dominance for decomposable multiparametric families with applications to order statistics. Stat. Prob. Lett. 159, 108691 (2020) Marshall, A.W., Olkin, I.: Life distributions, vol. 13. Springer (2007) Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: theory of majorization and its applications. Springer (2011) McDonald, J.B.: Some generalized functions for the size distribution of income. Econometrica: journal of the Econometric Society 647–663 (1984) McDonald, J.B., Xu, Y.J.: A generalization of the beta distribution with applications. J. Econ. 66(1–2), 133–152 (1995) Nadarajah, S., Cordeiro, G.M., Ortega, E.M.: The exponentiated Weibull distribution: a survey. Stat. Pap. 54(3), 839–877 (2013) Navarro, J., del Águila, Y., Sordo, M.A., Suárez-Llorens, A.: Stochastic ordering properties for systems with dependent identically distributed components. Appl. Stochas. Models Bus. Ind. 29(3), 264–278 (2013) Ramos, H.M., Ollero, J., Sordo, M.A.: A sufficient condition for generalized Lorenz order. J. Econ. Theory 90(2), 286–292 (2000) Sarabia, J.M., Castillo, E., Slottje, D.J.: Lorenz ordering between McDonald’s generalized functions of the income size distribution. Econ. Lett. 75(2), 265–270 (2002) Shaked, M.: Dispersive ordering of distributions. J. Appl. Prob. 19(2), 310–320 (1982) Shaked, M., Shanthikumar, J.G.: Stochastic orders. Springer Series in Statistics (2007) Stoyan, D.: Comparison methods for queues and other stochastic models. 1983. John Wiley&Sons (1983) Tahir, M., Cordeiro, G.M., Alzaatreh, A., Mansoor, M., Zubair, M.: The logistic-X family of distributions and its applications. Commun. Stat. Theory Methods 45(24), 7326–7349 (2016) Wang, S.S., Young, V.R.: Ordering risks: Expected utility theory versus Yaari’s dual theory of risk. Insur. Math. Econ. 22(2), 145–161 (1998) Wilfling, B.: Lorenz ordering of generalized beta-ii income distributions. J. Econ. 71(1–2), 381–388 (1996a) Wilfling, B.: Lorenz ordering of power-function order statistics. Stat. Prob. Lett. 30(4), 313–319 (1996b) Wilfling, B.: A sufficient condition for Lorenz ordering. Sankhyā: The Indian Journal of Statistics. Series B 62–69 (1996c) Wilfling, B., Krämer, W.: The Lorenz-ordering of Singh–Maddala income distributions. Econ. Lett. 43(1), 53–57 (1993) van Zwet, W.R.: Convex transformations of random variables. Mathematisch Centrum (1964)