Stochastic approximation method using diagonal positive-definite matrices for convex optimization with fixed point constraints
Tóm tắt
Từ khóa
Tài liệu tham khảo
Borkar, V.S.: Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge University Press, Cambridge (2008)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
Nedić, A., Lee, S.: On stochastic subgradient mirror-descent algorithm with weighted averaging. SIAM J. Optim. 24, 84–107 (2014)
Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19, 1574–1609 (2009)
Ghadimi, S., Lan, G.: Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization I: a generic algorithmic framework. SIAM J. Optim. 22, 1469–1492 (2012)
Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)
Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations, pp. 1–15 (2015)
Reddi, S.J., Kale, S., Kumar, S.: On the convergence of Adam and beyond. In: Proceedings of the International Conference on Learning Representations, pp. 1–23 (2018)
Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)
Berinde, V.: Iterative Approximation of Fixed Points. Springer, Berlin (2007)
Krasnosel’skiĭ, M.A.: Two remarks on the method of successive approximations. Usp. Mat. Nauk 10, 123–127 (1955)
Nakajo, K., Takahashi, W.: Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. J. Math. Anal. Appl. 279, 372–379 (2003)
Wittmann, R.: Approximation of fixed points of nonexpansive mappings. Arch. Math. 58, 486–491 (1992)
Iiduka, H.: Stochastic fixed point optimization algorithm for classifier ensemble. IEEE Trans. Cybern. 50, 4370–4380 (2020)
Yin, X.C., Huang, K., Hao, H.W., Iqbal, K., Wang, Z.B.: A novel classifier ensemble method with sparsity and diversity. Neurocomputing 134, 214–221 (2014)
Yin, X.C., Huang, K., Yang, C., Hao, H.W.: Convex ensemble learning with sparsity and diversity. Inf. Fusion 20, 49–58 (2014)
Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer, New York (2000)
Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert space. Math. Oper. Res. 26, 248–264 (2001)
Bauschke, H.H., Chen, J.: A projection method for approximating fixed points of quasi nonexpansive mappings without the usual demiclosedness condition. J. Nonlinear Convex Anal. 15, 129–135 (2014)
Vasin, V.V., Ageev, A.L.: Ill-Posed Problems with a Priori Information. V.S.P. Intl. Science, Utrecht (1995)
Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory, 2nd edn. MOS-SIAM Series on Optimization. SIAM, Philadelphia (2014)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)
Ghadimi, S., Lan, G.: Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization II: shrinking procedures and optimal algorithms. SIAM J. Optim. 23, 2061–2089 (2013)
Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press, New York (1990)
Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Dekker, New York (1984)
Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)
Yamada, I.: The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms for Feasibility and Optimization and Their Applications, pp. 473–504. Elsevier, New York (2001)
Yamada, I., Ogura, N.: Hybrid steepest descent method for variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings. Numer. Funct. Anal. Optim. 25, 619–655 (2004)
Wanka, G., Wilfer, O.: Formulae of epigraphical projection for solving minimax location problems. Pac. J. Optim. 16, 289–313 (2020)
Nedić, A., Ozdaglar, A.: Approximate primal solutions and rate analysis for dual subgradient methods. SIAM J. Optim. 19, 1757–1780 (2009)
Iiduka, H.: Distributed optimization for network resource allocation with nonsmooth utility functions. IEEE Trans. Control Netw. Syst. 6, 1354–1365 (2019)
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27 (2011)
Dua, D., Graff, C.: UCI Machine learning repository. School Inf. Comput. Sci., Univ. California at Irvine, Irvine, CA, USA (2019)