Stochastic Bernstein polynomials: uniform convergence in probability with rates

Springer Science and Business Media LLC - Tập 46 - Trang 1-10 - 2020
José A. Adell1, Daniel Cárdenas-Morales2
1Departamento de Métodos Estadísticos, Universidad de Zaragoza, Zaragoza, Spain
2Departamento de Matemáticas, Universidad de Jaén, Jaén, Spain

Tóm tắt

We introduce stochastic variants of the classical Bernstein polynomials associated with a continuous function f, built up from a general triangular array of random variables. We discuss the uniform convergence in probability of the approximation process that they represent, providing at the same time rates of convergence. In the particular case in which the triangular array of random variables consists of the uniform order statistics, we give a positive answer to a conjectured raised in Wu and Zhou (Adv. Comput. Math. 46, 8, 2020) about an exponential rate of convergence in probability.

Tài liệu tham khảo

Adell, J.A., Cárdenas-Morales, D.: Quantitative generalized Voronovskaja’s formulae for Bernstein polynomials. J. Approx. Theory 231, 41–52 (2018) Adell, J.A., de la Cal, J.: Bernstein Durrmeyer operators. Comput. Math. Applic. 30(3–6), 1–14 (1995) Adell, J.A., Pérez-Palomares, A.: Stochastic orders in preservation properties by Bernstein-type opoerators. Adv. Appl. Prob. 31, 492–509 (1999) Arnold, B.C., Balakrishnan, N., Nagaraja, H.N.: A First Course in Order Statistics. SIAM (2008) Cao, F., Xia, S.: Random sampling scattered data with multivariate Bernstein polynomials. Chin. Ann. Math. 35B(4), 607–618 (2014) Ditzian, Z., Ivanov, K.G.: Strong converse inequalities. J. Anal. Math. 61, 61–111 (1993) Durrmeyer, J.L.: Une formule d’inversion de la transformeé de Laplace: applications à la théorie des moments, Thése de 3e cycle Faculté des Sciences de l’Université de Paris (1967) Lupaş, A.I.: Die Folge der Beta-Operatoren. Dissertation, Universität Stuttgart (1972) Păltănea, R.: Approximation Theory Using Positive Linear Operators. Birkhäuser Boston, Inc., Boston (2004) Sikkema, P.C.: Der Wert einiger Konstanten in der Theorie der Approximation mit Bernstein-Polynomen. Numer. Math. 3, 107–116 (1961) Sun, X., Wu, Z.: Chebyshev type inequality for stochastic Bernstein polynomials. Proc. Amer. Math. Soc. 147(2), 671–679 (2019) Totik, V.: Strong converse inequalities. J. Approx. Theory 76(3), 369–375 (1994) Winter, B.B.: Transformations of Lebesque-Stieltjes integrals. J. Math. Anal. Appl. 205, 471–484 (1997) Wu, Z., Sun, X., Ma, L.: Sampling scattered data with Bernstein polynomials: stochastic and deterministic error estimates. Adv. Comput. Math. 38, 187–205 (2013) Wu, Z., Zhou, X.: Polynomial convergence order of stochastic Bernstein approximation. Adv. Comput. Math. 46, 8 (2020)