Sterilization of hydrogels for biomedical applications: A review

Raquel Galante1,2, Terezinha de Jesus Andreoli Pinto2, R. Colaço1,3, Ana Paula Serro4,1
1Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
2Departamento de Farmácia Faculdade de Ciências Farmacêuticas, Universidade de São Paulo Butantã São Paulo Brazil
3Departamento de Engenharia Mecânica and IDMEC Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
4Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, Quinta da Granja, Monte de Caparica Caparica Portugal

Tóm tắt

Abstract

Despite the beneficial properties and outstanding potential of hydrogels for biomedical applications, several unmet challenges must be overcome, especially regarding to their known sensitivity to conventional sterilization methods. It is crucial for any biomaterial to withstand an efficient sterilization to obtain approval from regulatory organizations and to safely proceed to clinical trials. Sterility assurance minimizes the incidence of medical device‐related infections, which still constitute a major concern in health care. In this review, we provide a detailed and comprehensive description of the published work from the past decade regarding the effects of sterilization on different types of hydrogels for biomedical applications. Advances in hydrogel production methods with simultaneous sterilization are also reported. Terminal sterilization methods can induce negative or positive effects on several material properties (e.g., aspect, size, color, chemical structure, mechanical integrity, and biocompatibility). Due to the complexity of factors involved (e.g., material properties, drug stability, sterilization conditions, and parameters), it is important to note the virtual impossibility of predicting the outcome of sterilization methods to determine a set of universal rules. Each system requires case‐by‐case testing to select the most suitable, effective method that allows for the main properties to remain unaltered. The impact of sterilization methods on the intrinsic properties of these systems is understudied, and further research is needed. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2472–2492, 2018.

Từ khóa


Tài liệu tham khảo

10.1038/185117a0

10.1016/S0169-409X(01)00239-3

10.1002/adma.200501612

10.1016/j.eurpolymj.2014.11.024

10.1016/S0939-6411(00)00090-4

10.1016/0142-9612(95)00307-X

10.1016/j.jconrel.2014.03.052

10.1016/j.mser.2015.04.001

10.1016/j.progpolymsci.2012.09.001

Laverty G, 2012, Advances in Medicine and Biology. 51, 79

10.1002/bit.23105

10.1039/C4TB00083H

10.1556/IMAS.6.2014.2.1

Ratner BD, 2012, Biomater Science: An Introduction to Materials in Medicine

Sakar F, 2016, Nano drug delivery systems and gamma radiation sterilization, Pharm Dev Technol, 1

10.1016/j.nano.2014.03.017

WilliamA.RutalaDJW HICPAC. Guideline for Disinfection and Sterilization in Healthcare Facilities;2008. p.158.

5 EPE, 2005, General Texts on Sterility, 445

Killeen S, 2012, Decontamination and sterilization, Surgery, 30, 687

10.1533/9780857096265.1

Services USDoHaH (FDA) FaDA (CDER) CfDEaR (CBER) CfBEaR (ORA) OoRA. Guidance for Industry—Sterile Drug Products Produced by Aseptic Processing—Current Good Manufacturing Practice;2004.

10.1007/978-3-642-59779-4_10

10.1002/jbm.b.10020

10.1016/j.biomaterials.2005.04.063

10.1002/(SICI)1097-4636(20000315)49:4<469::AID-JBM5>3.0.CO;2-A

10.1359/jbmr.2001.16.11.2082

Standardization IOf. Sterilization of health care products— eneral requirements for characterization of a sterilizing agent and the development validation and routine control of a sterilization process for medical devices ISO 14937:2009(E);2009.

Roger WJ., 2012, 2‐Steam and dry heat sterilization of biomaterials and medical devices. In: Sterilisation of Biomaterials and Medical Devices, 20, 10.1533/9780857096265.20

Brasil. Farmacopeia Brasileira volume1. Agência Nacional de Vigilância Sanitária. Brasília: Anvisa;2010. p.904.

Pinto TJA, 2015, Controle Biológico de Qualidade de Produtos Farmacêuticos, Correlatos e Cosméticos

10.1201/9781420021622

Sterilization of health care products – Radiation Part 1: Requirements for Development Validation and Routine Control of a Sterilization Process for Medical Devices Part 2: Establishing the Sterilization Dose Part 3: Guidance on Dosimetric Aspects ISO 11137 ISO Geneva;2006.

10.4329/wjr.v8.i4.355

10.5731/pdajpst.2014.00955

10.1533/9780857096265.56

10.1128/CMR.12.1.147

10.1016/j.ajic.2006.10.014

Standarization IOf. Sterilization of health‐care products—Ethylene oxide—Requirements for the development validation and routine control of a sterilization process for medical devices;2016.

McKeenLW.The Effect of Sterilization on Plastics and Elastomers. William Andrew Elselvier.2012. p.363.

Mendes GC, 2012, 4 – Ethylene oxide (EO) sterilization of healthcare products. In: Sterilisation of Biomaterials and Medical Devices, 71

10.1016/j.ajic.2015.10.038

10.3892/etm.2010.136

10.1016/j.jfoodeng.2016.02.026

10.1016/j.memsci.2008.07.049

10.1017/S1466252311000016

Ducheyne P, 2015, Comprehensive Biomaterials. Amsterdam, The Netherlands

10.1371/journal.pone.0129205

10.1016/j.supflu.2005.05.005

10.1016/j.supflu.2013.08.011

10.1016/j.supflu.2010.02.006

EPA US. Guidance Manual: Alternative Disinfectants and Oxidants – Chap. 3 “Ozone”. Washington D.C.: Office of Water;1999. pp21–24.

10.1016/j.msec.2017.04.073

10.1016/j.jmbbm.2015.08.024

10.1016/j.polymdegradstab.2009.10.007

10.1002/jbm.b.32853

10.1002/jbm.b.32928

10.1016/j.jmbbm.2012.09.011

10.1016/j.snb.2012.10.040

10.1002/pol.1954.120147711

10.1016/S0069-8040(08)70333-9

10.1016/S0069-8040(08)70336-4

Ågren M., 2016, Wound Healing Biomaterials – Volume 2: Functional Biomaterials

10.1002/adv.21543

10.1016/j.triboint.2014.05.001

10.1016/j.supflu.2016.01.014

10.1002/bit.23105

10.1002/jbm.a.31717

10.1002/bit.21983

10.1016/j.biomaterials.2016.09.020

10.1016/j.polymertesting.2013.08.006

10.1177/0885328211398508

10.1016/j.actbio.2009.05.030

10.1080/10837450601166593

10.1163/156856209X449452

10.1021/bm0601575

10.1016/j.supflu.2015.04.006

10.1002/jbm.b.33070

10.1016/j.jmbbm.2017.01.038

10.1016/j.polymdegradstab.2009.11.001

10.1002/term.1616

10.1039/C6BM00478D

10.1016/j.actbio.2011.11.015

10.1002/term.1517

10.1002/smll.200901006

Özcan I, 2009, Effects of sterilization techniques on the PEGylated poly (γ‐benzyl‐L‐glutamate) (PBLG) nanoparticles, Acta Pharmaceutica Sciencia, 51, 211

10.1016/j.ejpb.2005.11.007

10.1016/j.ijpharm.2015.01.024

10.1371/journal.pone.0168862

10.1016/j.matlet.2011.12.116

10.1016/j.polymer.2016.01.030

10.1016/S0969-806X(98)00319-3

10.1016/j.polymdegradstab.2017.01.005

10.1016/j.radphyschem.2013.05.053

10.1002/app.33480

10.1016/j.nimb.2007.09.009

10.1016/j.nimb.2006.11.101

10.1016/j.radphyschem.2012.02.024

10.1016/j.addr.2012.07.015

10.1016/j.radphyschem.2007.06.006

Irene SK, 2016, Hydrogel based Drug delivery systems: A review with special emphasis on challenges associated with decontamination of hydrogels and biomaterials, Curr Drug Deliv, 13, 1

10.1016/j.ijpharm.2013.03.059

10.1016/j.polymdegradstab.2013.11.002

10.1002/jbm.a.31811

10.1016/j.colsurfb.2017.11.021

10.1002/pat.948