Stein quotients of connected complex lie groups

manuscripta mathematica - Tập 50 - Trang 185-214 - 1985
Dennis M. Snow1
1Department of Mathematics, University of Notre Dame, Notre Dame

Tóm tắt

Various algebraic and geometric conditions on connected complex Lie groups G and H are shown to characterize the quotient G/H as a Stein manifold. Among these conditions are analytic analogues of the algebraic notions of observable or strongly observable subgroups and cohomological conditions expressed in terms of equivariant maps. A specific group theoretic condition on H, generalizing Matsushima's criterion for reductive groups, is shown to be necessary for G/H to be Stein and the sufficiency of this condition is proven when G is solvable or when H satisfies a dimension restriction. Also included is a geometric description of a Stein quotient G/H as a bundle space over an orbit of a maximal reductive subgroup of G, and a theorem on the orbits of solvable groups In ℂn.

Tài liệu tham khảo

ATIYAH, M.: Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc.85, 181 -207 (1957) BARTH, W., OTTE, M.: Invariante holomorphe Functionen auf reduktiven Liegruppen. Math. Ann.201, 97–112 (1973) BIALYNICKI-BIRULA, A., HOCHSCHILD, G., MOSTOW, G.D.: Extensions of representations of algebraic linear groups. Am. J. Math.85, 131–144 (1963) CHEVALLEY, C.: Théorie des groupes de Lie. Paris: Hermann 1968 CLINE, E., PARSHALL, B., SCOTT, L.: Induced modules and affine quotients. Math. Ann.230, 1–14 (1977) GRAUERT, H.: Analytische Faserungen über holomorph-vollständigen Räumen. Math. Ann.135, 263–273 (1958) GRAUERT, H., REMMERT, R.: Theory of Stein Spaces. Berlin, Heidelberg, New York: Springer 1979 HABOUSH, W.: Homogeneous vector bundles and reductive subgroups of reductive algebraic groups. Am. J. Math.100, 1123–1137 (1978) HOCHSCHILD, G.: The Structure of Lie Gorups. San Francisco, London, Amsterdam: Holden-Day 1965 HOCHSCHILD, G., MOSTOW, G.D.: Representations and representative functions of Lie groups, III. Ann. Math.70, 85–100 (1959) HOCHSCHILD, G., MOSTOW, G. D.: On the algebra of representative functions of an analytic group, II. Am. J. Math.86, 869–887 (1964) HOLMANN, H.: Komplexe Räume mit komplexen Transformationsgruppen. Math. Ann.150, 327–360 (1963) HUCKLEBERRY, A.T., OELJEKLAUS, E.: Homogeneous spaces from the complex analytic viewpoint. Manifolds and Lie Groups. Progress in Mathematics14. Boston, Basel, Stuttgart: Birkhäuser 1981 HUMPHREYS, J.: Linear Algebraic Groups. New York, Heidelberg, Berlin: Springer 1975 KAUP, L: Eine Künnethformel für Fréchetgerben. Math. Z.97, 158–168 (1967) MATSUSHIMA, Y.: Espaces homogènes de Stein des groupes de Lie complexes. Nagoya Math. J.16, 205–218 (1960) MATSUSHIMA, Y.: Espaces homogènes de Stein des groupes de Lie complexes, II. Nagoya Math. J.18, 153–164 (1961) MATSUSHIMA, Y., MORIMOTO, A.: Sur certains espaces fibrés holomorphes sur une variété de Stein. Bull. Soc. Math. France88, 137–155 (1960) SNOW, D.: Reductive group actions on Stein spaces. Math. Ann.259, 79–97 (1982)