Steam generation under one sun enabled by a floating structure with thermal concentration
Tóm tắt
Từ khóa
Tài liệu tham khảo
Dalvi, V. H., Panse, S. V. & Joshi, J. B. Solar thermal technologies as a bridge from fossil fuels to renewables. Nat. Clim. Change 5, 1007–1013 (2015).
Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).
Narayan, G. P. et al. The potential of solar-driven humidification-dehumidification desalination for small-scale decentralized water production. Renew. Sustain. Energy Rev. 14, 1187–1201 (2010).
Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).
Li, C., Goswami, Y. & Stefanakos, E. Solar assisted sea water desalination: a review. Renew. Sustain. Energy Rev. 19, 136–163 (2013).
Tiwari, G. N., Singh, H. N. & Tripathi, R. Present status of solar distillation. Sol. Energy 75, 367–373 (2003).
Phelan, P., Taylor, R., Adrian, R., Prasher, R. & Otanicar, T. Nanoparticle Heat Transfer Fluid Flow (CRC Press, 2012).
Jenkins, D. et al. Solar concentration of 50,000 achieved with output power approaching 1 kW. J. Sol. Energy Eng. 118, 141–145 (1996).
Reif, J. H. & Alhalabi, W. Solar-thermal powered desalination: its significant challenges and potential. Renew. Sustain. Energy Rev. 48, 152–165 (2015).
Montes, M. J., Abánades, A. & Martínez-Val, J. M. Performance of a direct steam generation solar thermal power plant for electricity production as a function of the solar multiple. Sol. Energy 83, 679–689 (2009).
Neumann, O. et al. Nanoparticle-mediated, light-induced phase separations. Nano Lett. 15, 7880–7885 (2015).
Neumann, O. et al. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proc. Natl Acad. Sci. USA 110, 11677–11681 (2013).
Liu, Y. et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 27, 2768–2774 (2015).
Wang, Z. et al. Evaporation: bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface. Small 10, 3233–3233 (2014).
Boriskina, S. V., Ghasemi, H. & Chen, G. Plasmonic materials for energy: from physics to applications. Mater. Today 16, 375–386 (2013).
Tian, L. et al. Plasmonic biofoam: a versatile optically active material. Nano Lett. 16, 609–616 (2015).
Yu, S. et al. The impact of surface chemistry on the performance of localized solar-driven evaporation system. Sci. Rep. 5, 13600 (2015).
Baffou, G., Polleux, J., Rigneault, H. & Monneret, S. Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination. J. Phys. Chem. C 118, 4890–4898 (2014).
Baral, S., Green, A. J., Livshits, M. Y., Govorov, A. O. & Richardson, H. H. Comparison of vapor formation of water at the solid/water interface to colloidal solutions using optically excited gold nanostructures. ACS Nano 8, 1439–1448 (2014).
Bae, K. et al. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015).
Zhao, D. et al. Enhancing localized evaporation through separated light absorbing centers and scattering centers. Sci. Rep. 5, 17276 (2015).
Ernst & Young Inc. Assessment of the Local Manufacturing Potential for Concentrated Solar Power (CSP) Projects (The World Bank, 2011).
Kolb, G. J., Ho, C. K., Mancini, T. R. & Gary, J. A. Power Tower Technology Roadmap and Cost Reduction Plan (Sandia National Labs, 2011).
Weiss, W., Mauthner, F. & Spork-Dur, M. Solar Heat Worldwide (Solar Heating and Cooling Programme, International Energy Agency, 2012).
Ito, Y. et al. Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv. Mater. 27, 4302–4307 (2015).
Liu, Y., Chen, J., Guo, D., Cao, M. & Jiang, L. Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air–water interface. ACS Appl. Mater. Interface 7, 13645–13652 (2015).
Ni, G. et al. Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy 17, 290–301 (2015).
Zhou, L. et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photon. 10, 393–398 (2016).
Zhou, L. et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2, e1501227 (2016).
Zeng, Y. et al. Solar evaporation enhancement using floating light-absorbing magnetic particles. Energy Environ. Sci. 4, 4074–4078 (2011).
Zhang, L., Tang, B., Wu, J., Li, R. & Wang, P. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 27, 4889–4894 (2015).
Cao, F., McEnaney, K., Chen, G. & Ren, Z. A review of cermet-based spectrally selective solar absorbers. Energy Environ. Sci. 7, 1615–1627 (2014).
Harding, G. L. & Zhiqiang, Y. Thermosiphon circulation in solar water heaters incorporating evacuated tubular collectors and a novel water-in-glass manifold. Sol. Energy 34, 13–18 (1985).
Budihardjo, I. & Morrison, G. L. Performance of water-in-glass evacuated tube solar water heaters. Sol. Energy 83, 49–56 (2009).
Kabeel, A. E. & El-Agouz, S. A. Review of researches and developments on solar stills. Desalination 276, 1–12 (2011).
Velmurugan, V. & Srithar, K. Performance analysis of solar stills based on various factors affecting the productivity: a review. Renew. Sustain. Energy Rev. 15, 1294–1304 (2011).
Lighter, S. Floating solar still. US patent no. US2820744 A (1958).
Miller, W. H. J. Inflatable floating solar still with capillary feed. US patent no. US2412466 A. (1946).
