Status of fire blight resistance breeding in Malus
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aldwinckle H, van der Zwet T (1979) Recent progress in breeding for fireblight resistance in apples and pears in North America 1. EPPO Bull 9:27–34
Aldwinckle HS, Gustafson HL, Forsline PL (1999) Evaluation of the core subset of USDA apple germplasm collection for resistance to fire blight. Acta Hortic 489:269–272
Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, Voytas DF (2015) Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat Plants 1:1–4
Bartho JD, Demitri N, Bellini D, Flachowsky H, Peil A, Walsh MA, Benini S (2019) The structure of Erwinia amylovora AvrRpt2 provides insight into protein maturation and induced resistance to fire blight by Malus ×robusta 5. J Struct Biol 206:233–242. https://doi.org/10.1016/j.jsb.2019.03.010
Baumgartner I, Patocchi A, Franck L, Kellerhals M, Broggini G (2011) Fire blight resistance from ‘Evereste’ and Malus sieversii used in breeding for new high quality apple cultivars: strategies and results. Acta Hortic 896:391–397
Baumgartner IO, Patocchi A, Lussi L, Kellerhals M, Peil A (2014) Accelerated introgression of fire blight resistance from Malus xrobusta 5 and other wild germplasm into elite apples. Acta Hortic 1056:281–287
Broggini GA, Wöhner T, Fahrentrapp J, Kost TD, Flachowsky H, Peil A, Hanke MV, Richter K, Patocchi A, Gessler C (2014) Engineering fire blight resistance into the apple cultivar ‘Gala’ using the FB_MR5 CC-NBS-LRR resistance gene of Malus xrobusta 5. Plant Biotechnol J 12:728–733. https://doi.org/10.1111/pbi.12177
Büttner R, Geibel M, Fischer C (2000) The genetic potential of scab and mildew resistance in Malus wild species. Acta Hortic 538:67–70
Campa M, Piazza S, Righetti L, Oh C-S, Conterno L, Borejsza-Wysocka E, Kanchiswamy CN, Beer SV, Aldwinckle H, Malnoy M (2019) HIPM is a susceptibility gene of Malus: reduced expression reduces susceptibility to Erwinia amylovora. Mol Plant-Microbe Interact 32:167–175
Chen X, Li S, Zhang D, Han M, Jin X, Zhao C, Wang S, Xing L, Ma J, Ji J (2019) Sequencing of a wild apple (Malus baccata) genome unravels the differences between cultivated and wild apple species regarding disease resistance and cold tolerance. G3 9:2051–2060
Cornille A, Gladieux P, Smulders MJ, Roldán-Ruiz I, Laurens F, Le Cam B, Nersesyan A, Clavel J, Olonova M, Feugey L (2012) New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genet 8:e1002703
Crandall CS (1926) Apple breeding at the University of Illinois. Illinois Agric Exp Stn Bull 275:341–600
Denning W (1794) On the decay of apple trees. New York Society for the Promotion of Agricultural Arts and Manufacturers Transaction 2:219–222
Desnoues E, Norelli JL, Aldwinckle HS, Wisniewski ME, Evans KM, Malnoy M, Khan A (2018) Identification of novel strain-specific and environment-dependent minor QTLs linked to fire bight resistance in apples. Plant Mol Biol Report 36:247–256. https://doi.org/10.1007/s11105-018-1076-0
Duan N, Bai Y, Sun H, Wang N, Ma Y, Li M, Wang X, Jiao C, Legall N, Mao L, Wan S, Wang K, He T, Feng S, Zhang Z, Mao Z, Shen X, Chen X, Jiang Y, Wu S, Yin C, Ge S, Yang L, Jiang S, Xu H, Liu J, Wang D, Qu C, Wang Y, Zuo W, Xiang L, Liu C, Zhang D, Gao Y, Xu Y, Xu K, Chao T, Fazio G, Shu H, Zhong G-Y, Cheng L, Fei Z, Chen X (2017) Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nat Commun 8:249. https://doi.org/10.1038/s41467-017-00336-7
Durel CE, Denance C, Brisset MN (2009) Two distinct major QTL for resistance to fire blight co-localize on linkage group 12 in apple genotypes ‘Evereste’ and Malus floribunda clone 821. Genome 52:139–147. https://doi.org/10.1139/g08-111
Emeriewen O, Richter K, Kilian A, Zini E, Hanke MV, Malnoy M, Peil A (2014) Identification of a major quantitative trait locus for resistance to fire blight in the wild apple species Malus fusca. Mol Breed 34:407–419. https://doi.org/10.1007/s11032-014-0043-1
Emeriewen OF, Richter K, Hanke MV, Malnoy M, Peil A (2015) The fire blight resistance QTL of Malus fusca (Mfu10) is affected but not broken down by the highly virulent Canadian Erwinia amylovora strain E2002A. Eur J Plant Pathol 141:631–635. https://doi.org/10.1007/s10658-014-0565-8
Emeriewen OF, Richter K, Hanke M-V, Malnoy M, Peil A (2017a) Further insights into Malus fusca fire blight resistance. J Plant Pathol 99:45–49
Emeriewen OF, Peil A, Richter K, Zini E, Hanke MV, Malnoy M (2017b) Fire blight resistance of Malus ×arnoldiana is controlled by a quantitative trait locus located at the distal end of linkage group 12. Eur J Plant Pathol 148:1011–1018. https://doi.org/10.1007/s10658-017-1152-6
Emeriewen OF, Richter K, Piazza S, Micheletti D, Broggini GAL, Berner T, Keilwagen J, Hanke M-V, Malnoy M, Peil A (2018) Towards map-based cloning of FB_Mfu10: identification of a receptor-like kinase candidate gene underlying the Malus fusca fire blight resistance locus on linkage group 10. Mol Breed 38:106. https://doi.org/10.1007/s11032-018-0863-5
Emeriewen OF, Wöhner T, Flachowsky H, Peil A (2019) Malus hosts–Erwinia amylovora interactions: strain pathogenicity and resistance mechanisms. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00551
Evans K, Peace C (2017) Advances in marker-assisted breeding of apples. In: Evans K (ed) Achieving sustainable cultivation of apples. Burleigh Dodds series in agricultural science, vol 18. Burleigh Dodds Science Publishing Limited, pp 189–216
Fahrentrapp J, Broggini GAL, Kellerhals M, Peil A, Richter K, Zini E, Gessler C (2013) A candidate gene for fire blight resistance in Malus × robusta 5 is coding for a CC-NBS-LRR. Tree Genet Genomes 9:237–251. https://doi.org/10.1007/s11295-012-0550-3
Fiala JL (1994) Flowering crabapples: the genus Malus. Timber Press, Inc., Portland
Fischer C, Fischer M (1996) Results in apple breeding at Dresden-Pillnitz - Review Gartenbauwissenschaft 61:139–146
Fischer M, Fischer C (1999) Evaluation of Malus species and cultivars at the fruit Genebank Dresden-Pillnitz and its use for apple resistance breeding. Genet Resour Crop Evol 46:235–241. https://doi.org/10.1023/A:1008652931035
Fischer C, Richter K (2004) Fire blight resistant apple cultivars produced by conventional breeding. Acta Hortic:721–724. https://doi.org/10.17660/ActaHortic.2004.663.129
Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus xdomestica Borkh.). Plant Breed 126:137–145. https://doi.org/10.1111/j.1439-0523.2007.01344.x
Flachowsky H, Hanke MV, Peil A, Strauss SH, Fladung M (2009) A review on transgenic approaches to accelerate breeding of woody plants. Plant Breed 128:217–226
Flachowsky H, Szankowski I, Fischer TC, Richter K, Peil A, Hofer M, Dorschel C, Schmoock S, Gau AE, Halbwirth H, Hanke MV (2010) Transgenic apple plants overexpressing the Lc gene of maize show an altered growth habit and increased resistance to apple scab and fire blight. Planta 231:623–635. https://doi.org/10.1007/s00425-009-1074-4
Flachowsky H, Halbwirth H, Treutter D, Richter K, Hanke MV, Szankowski I, Gosch C, Stich K, Fischer TC (2012) Silencing of flavanone-3-hydroxylase in apple (Malus x domestica Borkh.) leads to accumulation of flavanones, but not to reduced fire blight susceptibility. Plant Physiol Biochem 51:18–25. https://doi.org/10.1016/j.plaphy.2011.10.004
Flor HH (1971) Current status of gene-for-gene concept. Annu Rev Phytopathol 9:275–296. https://doi.org/10.1146/annurev.py.09.090171.001423
Gusberti M, Klemm U, Meier MS, Maurhofer M, Hunger-Glaser I (2015) Fire blight control: the struggle goes on. A comparison of different fire blight control methods in Switzerland with respect to biosafety, efficacy and durability. Int J Env Res Public Health 12:11422–11447. https://doi.org/10.3390/ijerph120911422
Hanke M-V, Flachowsky H, Peil A, Hättasch C (2007) No flower no fruit—genetic potentials to trigger flowering in fruit trees. In: Books GS (ed) Genes, Genomes and Genomics, vol 1. Global Science Books Ltd., Ikenobe, Japan, pp 1–20
Hanke M-V, Flachowsky H, Peil A, Emeriewen OF (2020) Malus × domestica apple. In: Litz R, Pliego-Alfaro F, Hormaza JI (eds) Biotechnology of fruit and nut crops. Biotechnology in agricultural series, vol 29, 2nd edn. CAB International, Wallingford, pp 440–473
Harshman JM, Evans KM, Allen H, Potts R, Flamenco J, Aldwinckle HS, Wisniewski ME, Norelli JL (2017) Fire blight resistance in wild accessions of Malus sieversii. Plant Dis 101:1738–1745
Hutabarat OS, Flachowsky H, Regos I, Miosic S, Kaufmann C, Faramarzi S, Alam MZ, Gosch C, Peil A, Richter K, Hanke MV, Treutter D, Stich K, Halbwirth H (2016) Transgenic apple plants overexpressing the chalcone 3-hydroxylase gene of Cosmos sulphureus show increased levels of 3-hydroxyphloridzin and reduced susceptibility to apple scab and fire blight. Planta 243:1213–1224. https://doi.org/10.1007/s00425-016-2475-9
Ignatov A, Bodishevskaya A (2011) Malus. In: Wild crop relatives: genomic and breeding resources: temperate fruits. Springer
Johnson KB, Temple TN (2013) Evaluation of strategies for fire blight control in organic pome fruit without antibiotics. Plant Dis 97:402–409
Kanchiswamy CN, Sargent DJ, Velasco R, Maffei ME, Malnoy M (2015) Looking forward to genetically edited fruit crops. Trends Biotechnol 33:62–64
Kanchiswamy CN, Maffei M, Malnoy M, Velasco R, Kim J-S (2016) Fine-tuning next-generation genome editing tools. Trends Biotechnol 34:562–574
Keck M, Chartier R, Lecomte P, Reich H, Paulin J (1997) Erste Charakterisierung von Erwinia amylovora-Isolaten aus Österreich und Feuerbrand-Anfälligkeit einiger Apfel-Genotypen aus Mitteleuropa/first characterization of Erwinia amylovora isolates from Austria and fire blight susceptibility of some apple genotypes from Central Europe. JPDP:17–22
Kellerhals M, Schütz S, Patocchi A (2017) Breeding for host resistance to fire blight. J Plant Pathol 99:37–43
Khan M, Chao T (2017) Wild apple species as a source of fire blight resistance for sustainable productivity of apple orchards. NYSHS Fruit Quarterly 25:13–18
Khan MA, Duffy B, Gessler C, Patocchi A (2006) QTL mapping of fire blight resistance in apple. Mol Breed 17:299–306. https://doi.org/10.1007/s11032-006-9000-y
Khan MA, Durel CE, Duffy B, Drouet D, Kellerhals M, Gessler C, Patocchi A (2007) Development of molecular markers linked to the ‘Fiesta’ linkage group 7 major QTL for fire blight resistance and their application for marker-assisted selection. Genome 50:568–577
Khan M, Zhao Y, Korban S (2012) Molecular mechanisms of pathogenesis and resistance to the bacterial pathogen Erwinia amylovora, causal agent of fire blight disease in Rosaceae. Plant Mol Biol Rep 30:247–260. https://doi.org/10.1007/s11105-011-0334-1
Khan MA, Zhao Y, Korban SS (2013) Identification of genetic loci associated with fire blight resistance in Malus through combined use of QTL and association mapping. Physiol Plant 148:344–353
Khan M, Desnoues E, Clark M (2018) Bacterial strain affects cultivar response to fire blight in apples. NYSHS Fruit Quarterly 26:15–20
Koczan JM, McGrath MJ, Zhao Y, Sundin GW (2009) Contribution of Erwinia amylovora exopolysaccharides amylovoran and Levan to biofilm formation: implications in pathogenicity. Phytopathology 99:1237–1244. https://doi.org/10.1094/PHYTO-99-11-1237
Kost TD, Gessler C, Jänsch M, Flachowsky H, Patocchi A, Broggini GA (2015) Development of the first cisgenic apple with increased resistance to fire blight. PLoS One:10
Kostick S, Norelli J, Evans K (2019) Novel metrics to classify fire blight resistance of 94 apple cultivars. Plant Pathol 68:985–996
Le Lezec M, Paulin J-P, Lecomte P (1987) Shoot and blossom susceptibility to fire blight of apple cultivars. Acta Hortic 217:311–315
Le Roux P-M, Khan MA, Broggini GA, Duffy B, Gessler C, Patocchi A (2010) Mapping of quantitative trait loci for fire blight resistance in the apple cultivars ‘Florina’and ‘Nova Easygro’. Genome 53:710–722
Malnoy M, Venisse J-S, Chevreau E (2005) Expression of a bacterial effector, harpin N, causes increased resistance to fire blight in Pyrus communis. Tree Genet Genomes 1:41–49
Malnoy M, Jin Q, Borejsza-Wysocka EE, He SY, Aldwinckle HS (2007) Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus x domestica. Mol Plant-Microbe Interact 20:1568–1580. https://doi.org/10.1094/MPMI-20-12-1568
Malnoy M, Martens S, Norelli JL, Barny MA, Sundin GW, Smits THM, Duffy B (2012) Fire blight: applied genomic insights of the pathogen and host. Annu Rev Phytopathol 50:475–494. https://doi.org/10.1146/annurev-phyto-081211-172931
Malnoy M, Viola R, Jung M-H, Koo O-J, Kim S, Kim J-S, Velasco R, Nagamangala Kanchiswamy C (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904
McManus PS (2014) Does a drop in the bucket make a splash? Assessing the impact of antibiotic use on plants. Curr Opin Microbiol 19:76–82
McManus PS, Stockwell VO, Sundin GW, Jones AL (2002) Anitbiotic uns in plant agriculture. Annu Rev Phytopathol 40:443–465. https://doi.org/10.1146/annurev.phyto.40.120301.093927
McNally RR, Zhao Y, Sundin GW (2015) Towards understanding fire blight: virulence mechanisms and their regulation in Erwinia amylovora. In: Murillo J, Vinatzer BA, Jackson RW, Arnold DL (eds) Bacteria-plant interactions: advanced research and future trends. Caister Academic Press, Norfolk, pp 61–82
Meng XD, Bonasera JM, Kim JF, Nissinen RM, Beer SV (2006) Apple proteins that interact with DspA/E, a pathogenicity effector of Erwinia amylovora, the fire blight pathogen. Mol Plant-Microbe Interact 19:53–61
Mohan S, Fallahi E, Bijman V (2002) Evaluation of apple varieties for susceptibility to Erwinia amylovora by artificial inoculation under field conditions. Acta Hortic 590:373–375. https://doi.org/10.17660/ActaHortic.2002.590.56
Norelli JL, Aldwinckle HS (1986) Differential susceptibility of Malus spp. cultivars Robusta 5, Novole, and Ottawa 523 to Erwinia amylovora. Plant Dis 70:1019
Norelli JL, Aldwinckle HS, Beer SV (1984) Differential host x pathogen interaction among cultivars of apple and strains of Erwinia amylovora. Phytopathology 74:136–139
Norelli JL, Jones AL, Aldwinckle HS (2003) Fire blight management in the twenty-first century: using new technologies that enhance host resistance in apple. Plant Dis 87:756–765. https://doi.org/10.1094/PDIS.2003.87.7.756
Oh C-S, Beer SV (2005) Molecular genetics of Erwinia amylovora involved in the development of fire blight. FEMS Microbiol Lett 253:185–192. https://doi.org/10.1016/j.femsle.2005.09.051
Osakabe Y, Liang Z, Ren C, Nishitani C, Osakabe K, Wada M, Komori S, Malnoy M, Velasco R, Poli M (2018) CRISPR–Cas9-mediated genome editing in apple and grapevine. Nat Protoc 13:2844
Ozrenk K, Balta F, Guleryuz M, Kan T (2011) Fire blight (Erwinia amylovora) resistant/susceptibility of native apple germplasm from eastern Turkey. Crop Prot 30:526–530
Parravicini G, Gessler C, DenancÉ C, Lasserre-Zuber P, Vergne E, Brisset M-N, Patocchi A, Durel C-E, Broggini GAL (2011) Identification of serine/threonine kinase and nucleotide-binding site–leucine-rich repeat (NBS-LRR) genes in the fire blight resistance quantitative trait locus of apple cultivar ‘Evereste’. Mol Plant Pathol 12:493–505. https://doi.org/10.1111/j.1364-3703.2010.00690.x
Peil A, Hanke MV, Flachowsky H, Richter K, Garcia T, Trognitz B (2007a) Developing molecular markers for marker assisted selection of fire blight resistant apple seedlings. Acta Hortic 763:117–121
Peil A, Garcia-Libreros T, Richter K, Trognitz FC, Trognitz B, Hanke MV, Flachowsky H (2007b) Strong evidence for a fire blight resistance gene of Malus ×robusta located on linkage group 3. Plant Breed 126:470–475. https://doi.org/10.1111/j.1439-0523.2007.01408.x
Peil A, Hanke M-V, Flachowsky H, Richter K, Garcia-Libreros T, Celton J-M, Gardiner S, Horner M, Bus V (2008) Confirmation of the fire blight QTL of Malus ×robusta 5 on linkage group 3. Acta Hortic 793:297–303
Peil A, Bus VGM, Geider K, Richter K, Flachowsky H, Hanke MV (2009) Improvement of fire blight resistance in apple and pear. Int J Plant Breed 3:1–27
Peil A, Flachowsky H, Hanke M-V, Richter K, Rode J (2011) Inoculation of Malus ×robusta 5 progeny with a strain breaking resistance to fire blight reveals a minor QTL on LG5. Acta Hortic 896:357–362
Peil A, Wöhner T, Hanke MV, Flachowsky H, Richter K, Wensing A, Emeriewen O, Malnoy M, LeRoux PM, Patocchi A, Kilian A (2014) Comparative mapping of fire blight resistance in Malus. Acta Hortic 1056:47–52
Peil A, Hübert C, Wensing A, Horner M, Emeriewen OF, Richter K, Wöhner T, Chagné D, Orellana-Torrejon C, Saeed M (2019) Mapping of fire blight resistance in Malus ×robusta 5 flowers following artificial inoculation. BMC Plant Biol 19:532
Piqué N, Miñana-Galbis D, Merino S, Tomás JM (2015) Virulence factors of Erwinia amylovora: a review. Int J Mol Sci 16:12836–12854
Pompili V, Dalla Costa L, Piazza S, Pindo M, Malnoy M (2020) Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system. Plant Biotechnol J 18:845–858
Prokchorchik M, Choi S, Chung EH, Won K, Dangl JL, Sohn KH (2020) A host target of a bacterial cysteine protease virulence effector plays a key role in convergent evolution of plant innate immune system receptors. New Phytol 225:1327–1342. https://doi.org/10.1111/nph.16218
Richter K, Fischer C (2002) Stability of fire blight resistance in apple. Acta Hortic 590:381–384. https://doi.org/10.17660/ActaHortic.2002.590.58
Robinson T, Cummins J, Hoying S, Johnson W, Aldwinckle H, Norelli J (1998) Orchard performance of fire blight-resistant Geneva apple rootstocks. Acta Hortic:287–294
Russo NL, Robinson TL, Fazio G, Aldwinckle HS (2008) Fire blight resistance of Budagovsky 9 apple rootstock. Plant Dis 92:385–391. https://doi.org/10.1094/PDIS-92-3-0385
Schlathölter I, Jänsch M, Flachowsky H, Broggini GAL, Hanke M-V, Patocchi A (2018) Generation of advanced fire blight-resistant apple (Malus × domestica) selections of the fifth generation within 7 years of applying the early flowering approach. Planta 247:1475–1488. https://doi.org/10.1007/s00425-018-2876-z
Schouten HJ, Krens FA, Jacobsen E (2006) Cisgenic plants are similar to traditionally bred plants. EMBO Rep 7:750–753
Schröpfer S, Böttcher C, Wöhner T, Richter K, Norelli J, Rikkerink EH, Hanke M-V, Flachowsky H (2018) A single effector protein, AvrRpt2EA, from Erwinia amylovora can cause fire blight disease symptoms and induces a salicylic acid–dependent defense response. Mol Plant-Microbe Interact 31:1179–1191
SECB (2016) Statement on the experimental release of cisgenic apple trees with improved resistance towards fire blight. https://www.efbs.admin.ch/en/statements/field-trials/cisgenic-apple-application/
Silva KJP, Singh J, Bednarek R, Fei Z, Khan A (2019) Differential gene regulatory pathways and co-expression networks associated with fire blight infection in apple (Malus× domestica). Hortic Res 6:35
Singh DK, Maximova SN, Jensen PJ, Lehman BL, Ngugi HK, McNellis TW (2010) FIBRILLIN4 is required for plastoglobule development and stress resistance in apple and Arabidopsis. Plant Physiol 154:1281–1293
van de Weg E, Di Guardo M, Jänsch M, Socquet-Juglard D, Costa F, Baumgartner I, Broggini GA, Kellerhals M, Troggio M, Laurens F (2018) Epistatic fire blight resistance QTL alleles in the apple cultivar ‘Enterprise’and selection X-6398 discovered and characterized through pedigree-informed analysis. Mol Breed 38:5
van der Zwet T, Orolaza-Halbrendt N, Zeller W (2012) Fire blight: history, biology, and management. Chapter 3. Losses due to fire blight and economic importance of the disease. APS Press/American Phytopathological Society, St. Paul
Vogt I, Wöhner T, Richter K, Flachowsky H, Sundin GW, Wensing A, Savory EA, Geider K, Day B, Hanke MV, Peil A (2013) Gene-for-gene relationship in the host-pathogen system Malus xrobusta 5-Erwinia amylovora. New Phytol 197:1262–1275. https://doi.org/10.1111/nph.12094
Volz R, Rikkerink E, Austin P, Lawrence T, Bus V (2009) “ fast-breeding” in apple: a strategy to accelerate introgression of new traits into elite germplasm. Acta Hortic 814:163–168
Winslow CE, Broadhurst J, Buchanan RE, Krumwiede C, Rogers LA, Smith GH (1920) The families and genera of the bacteria: final report of the committee of the society of American bacteriologists on characterization and classification of bacterial types. J Bacteriol 5:191–229
Wöhner TW, Flachowsky H, Richter K, Garcia-Libreros T, Trognitz F, Hanke MV, Peil A (2014) QTL mapping of fire blight resistance in Malus xrobusta 5 after inoculation with different strains of Erwinia amylovora. Mol Breed 34:217–230. https://doi.org/10.1007/s11032-014-0031-5
Wöhner T, Szentgyorgyi E, Peil A, Richter K, Hanke MV, Flachowsky H (2016) Homologs of the FB_MR5 fire blight resistance gene of Malus xrobusta 5 are present in other Malus wild species accessions. Tree Genet Genomes 12:2. https://doi.org/10.1007/s11295-015-0962-y
Wöhner T, Richter K, Sundin GW, Zhao Y, Stockwell VO, Sellmann J, Flachowsky H, Hanke MV, Peil A (2018) Inoculation of Malus genotypes with a set of Erwinia amylovora strains indicates a gene-for-gene relationship between the effector gene Eop1 and both Malus floribunda 821 and Malus ‘Evereste’. Plant Pathol 67:938–947
Würdig J, Flachowsky H, Saß A, Peil A, Hanke MV (2015) Improving resistance of different apple cultivars using the Rvi6 scab resistance gene in a cisgenic approach based on the Flp/FRT recombinase system. Mol Breed 35:95. https://doi.org/10.1007/s11032-015-0291-8
Zhao Y (2014) Genomics of Erwinia amylovora and related Erwinia species associated with pome fruit trees. In: Gross DC, Lichens-Park A, Kole C (eds) Genomics of plant-associated bacteria. Springer-Verlag, Berlin Heidelberg, pp 1–36
Zhao Y, Sheng-Yang HE, Sundin GW (2006) The Erwinia amylovora avrRpt2EA gene contributes to virulence on pear and AvrRpt2EA is recognized by Arabidopsis RPS2 when expressed in Pseudomonas syringae. Mol Plant-Microbe Interact 19:644–654