Statistics of continuous trajectories in quantum mechanics: Operation-valued stochastic processes

Foundations of Physics - Tập 13 - Trang 779-812 - 1983
A. Barchielli1,2, L. Lanz1,2, G. M. Prosperi1,2
1Dipartimento di Fisica dell'Università, Milano, Italy
2Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Italy

Tóm tắt

A formalism developed in previous papers for the description of continual observations of some quantities in the framework of quantum mechanics is reobtained and generalized, starting from a more axiomatic point of view. The statistics of the observations of continuous state trajectories is treated from the beginning as a generalized stochastic process in the sense of Gel'fand. An effect-valued measure and an operation-valued measure on the σ-algebra generated by the cylinder sets in the space of trajectories are introduced. The properties of the characteristic functional for the “operation-valued stochastic process” are discussed and, through a suitableansatz, a significant class of such processes is explicitly constructed, which contains the examples of the preceding papers as particular cases.

Tài liệu tham khảo

A. Barchielli, L. Lanz, and G. M. Prosperi,Nuovo Cimento B72, 79 (1982). G. Ludwig, inLecture Notes in Physics (Springer, Berlin, 1973), Vol. 29, p. 122. L. Fonda, G. C. Ghirardi, and A. Rimini,Rep. Prog. Phys. 41, 587 (1978); B. Misra and E. C. G. Sudarshan,J. Math. Phys. 18, 756 (1977). G. Ludwig,Commun. Math. Phys. 4, 331 (1967);Commun. Math. Phys. 9, 1 (1968);Lecture Notes in Physics (Springer, Berlin, 1970), Vol. 4. K.-E. Hellwig and K. Kraus,Commun. Math. Phys. 11, 214 (1969);Commun. Math. Phys. 16, 142 (1970); A. Hartkämper, inLecture Notes in Physics (Springer, Berlin, 1970), Vol. 29, p. 107; H. Neumann,ibid., p. 116 and p. 316; K. Kraus,ibid., p. 206. R. Haag and D. Kastler,J. Math. Phys. 5, 848 (1964); O. Steinmann,Commun. Math. Phys. 7, 112 (1968); C. M. Edwards,Commun. Math. Phys. 16, 207 (1970);Commun. Math. Phys. 20, 26 (1971); E. B. Davies and J. T. Lewis,Commun. Math. Phys. 17, 239 (1970); A. S. Holevo,J. Multivariate Anal. 3, 337 (1973);Rep. Math. Phys. 13, 379 (1978);Rep. Math. Phys. 16, 385 (1979); E. Prugovečki,J. Math. Phys. 17, 517 (1976);J. Math. Phys. 18, 219 (1977). E. B. Davies,Quantum Theory of Open Systems (Academic Press, New York and London, 1976). I. M. Gel'fand and N. Ya. Vilenkin,Generalized Functions, Applications of Harmonic Analysis (Academic Press, New York and London, 1964). Vol. 4. M. C. Reed, inLecture Notes in Physics (Springer Berlin, 1973), Vol. 25, p. 2. Dao-Xing Xia,Measure and Integration Theory on Infinite-Dimensional Spaces (Academic Press, New York and London, 1972). G. Lupieri, “Generalized Stochastic Processes and Continual Observations in Quantum Mechanics,” to appear inJ. Math. Phys. A. Barchielli,Nuovo Cimento B74, 113 (1983). M. D. Srinivas and E. B. Davies,Optica Acta 28, 981 (1981). V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, and E. C. G. Sudarshan,Rep. Math. Phys. 13, 149 (1978). V. Gorini, A. Kossakowski, and E. C. G. Sudarshan,J. Math. Phys. 17, 821 (1976). G. Lindblad,Commun. Math. Phys. 48, 119 (1976). R. Kubo, inStatistical Mechanics of Equilibrium and Nonequilibrium (Proc. I.U.P.A.P. Symposium, Aachen, 1964), J. Meixner, ed. (North-Holland, Amsterdam, 1965), p. 81. E. Hille and R. S. Phillips,Functional Analysis and Semi-groups (American Mathematical Society, Providence, R.I., 1977), p. 306.