Statistical tests for non-independent partitions of large autocorrelated datasets

MethodsX - Tập 9 - Trang 101660 - 2022
Anthony R. Ives1, Likai Zhu1, Fangfang Wang1, Jun Zhu1, Clay J. Morrow1, Volker C. Radeloff1
1Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA

Tài liệu tham khảo

Banerjee, 2008, Stationary process approximation for the analysis of large spatial datasets, J. R. Stat. Soc. Ser. B-Stat. Methodol., 70, 825, 10.1111/j.1467-9868.2008.00663.x Benjamini, 1995, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc. Ser. B-Stat. Methodol., 57, 289 Box, 1994 Cressie, 1993 Duchesne, 2010, Computing the distribution of quadratic forms: further comparisons between the Liu-Tang-Zhang approximation and exact methods, Comput. Stat. Data Anal., 54, 858, 10.1016/j.csda.2009.11.025 Hochberg, 1988, A sharper bonferroni procedure for multiple tests of significance, Biometrika, 75, 800, 10.1093/biomet/75.4.800 Imhof, 1961, Computing the distribution of quadratic forms in normal variables, Biometrika, 48, 419, 10.1093/biomet/48.3-4.419 Ives, 2006, Statistics for correlated data: phylogenies, space, and time, Ecol. Appl., 16, 20, 10.1890/04-0702 Ives, 2021, Statistical inference for trends in spatiotemporal data, Remote Sens. Environ., 266, 10.1016/j.rse.2021.112678 Judge, 1985 Krainski, 2019 Neter, 1989 Wikle, 2019 Zammit-Mangion, A., & Cressie, N. (2018). FRK: An R package for spatial and spatio-temporal prediction with large datasets. arXiv