Statistical simulation of mechanical engineering products by diagnostic parameters
Tóm tắt
A method of statistical simulation of complicated mechanical engineering products for real-time decision making during acceptance and check tests is developed. The main advantage of the method suggested is related to the use of simplified models based on the establishment of stationary dependences between time-dependent stochastic processes of change in the diagnostic parameters.
Tài liệu tham khảo
Mitenkov, F.M., Gorodov, G.F., Korotkikh, Yu.G., et al., Reliability, Resources and Safety Problems of Nuclear Power Installations, Problemy mashinostroeniya i nadezhnosti mashin, 2002, vol. 2, pp. 106–113.
Agdamov, R.I., Berkheev, M.M., and Zalyaev, I.A., Avtomatizirovannye ispytaniya v aviastroenii (Automated Testing in Aircraft Construction), Moscow: Mashinostroenie, 1989.
Kolykhan, N.V., Statistical Analyzer and Algorithms of Models Creation for the Controlled Object in the Basis of Empirical Data of Limited Volume, Materialy vserossiiskogo smotra-konkursa n-t tvorchestva studentov vuzov, (Proc. of All-Russian Competition of Scientific and Technical Creation of College Students), Moscow: Evrika, 2006.
Durbin, J. and Koopman S.J., Time Series Analysis by State Space Methods, Oxford: Oxford University Press, 2005.
Alwan, L.C. and Roberts, H.V., Time Series Modeling for Statistical Process Control, J. of Business and Economics Statistics, 1988, vol. 6, no. 1, pp. 87–95.
Skurikhin, V.I., Kvachev, V.G., Val’kman Yu.R., et al., Informatsionnye tekhnologii v ispytaniyakh slozhnykh ob”ektov (Informational Technologies in Complicated Objects Testing), Kiev: Naukova Dumka, 1990.
Pervukhina, E.L., Selection of Informative Parameters of Complicated Engineering Objects as a Means of Their Quality Guarantee, Vestnik SevGTU “Mekhanika, Energetika, Ekologiya,” 1997, vol. 6, pp. 46–49.
Mokrous, M.F., Diagnosis of Aviation Gas Turbine Engines on Thermogas Dynamic Parameters, Diagnostirovanie mashin-avtomatov i promyshlennykh robotov (Diagnosis of Automates and Industrial Robots), Moscow: Nauka, 1983, pp. 138–142.
Rybalko, V.V., Parametric Diagnosis of Energetic Objects Based on Factor Analysis on “Statistica” Software, Exponenta Pro., 2004, pp. 78–83.
Akhmedzyanov, A.M., Dubravskii, N.G., and Tunakov, A.P., Diagnostika sostoyaniya VRD po dinamicheskim parametram (Diagnostics of ABE State by Thermogas Dynamic Parameters), Moscow: Mashinostroenie, 1983.
Egle, R.E. and Grander, C.W.J., Cointegration and Error Correction: Representation, Estimation and Testing, Econometrica, 1987, vol. 55, pp. 251–276.
Pervukhina, E.L., Sopin, P.K., and Golikova, V.V., Vector Autoregressive Models in Research Problems for Complicated Engineering production, Sb. nauchn. tr. Donetsk. natsion. tekhnich. un-ta “Progressivnye tekhnologii i sistemy mashinostroeniya,” 2007, vol. 33, pp. 64–69.
Pervukhina, E.L. and Golikova, V.V., Analysis of Nonstationary Stochastic Processes in Automation of Industrial Testing Problems for Engineering Production, Sborka v Mashinostroenii, Priborostroenii, 2007, vol. 8.
Doan, T.A., RATS Software Package, User’s Manual, Version 6.0. Estima, Illinois: Evanston, 2005.
Kantorovich, G.G., Time Series Analysis, Ekonomicheskii zhurnal VShE, 2003, vol. 1, pp. 79–97.