Statistical modeling of robust non-negative matrix factorization based on $$\gamma $$-divergence and its applications

Japanese Journal of Statistics and Data Science - Tập 2 Số 2 - Trang 441-464 - 2019
Ken–ichi Machida1,2, Takashi Takenouchi3
1Future University Hakodate, Hakodate, Japan
2Hitachi, Ltd., Tokyo, Japan
3RIKEN Center for Advanced Intelligence Project, Future University Hakodate, Hakodate, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Basu, A., Harris, I. R., Hjort, N. L., & Jones, M. (1998). Robust and efficient estimation by minimising a density power divergence. Biometrika, 85(3), 549–559.

Cichocki, A., & Amari, S. (2010). Families of alpha- beta- and gamma- divergences: Flexible and robust measures of similarities. Entropy, 12(6), 1532–1568. https://doi.org/10.3390/e12061532.

Cichocki, A., Cruces, S., & Amari, S. (2011). Generalized alpha-beta divergences and their application to robust nonnegative matrix factorization. Entropy, 13(1), 134–170. Available: http://www.mdpi.com/1099-4300/13/1/134

Dikmen, O., Yang, Z., & Oja, E. (2015). Learning the information divergence. IEEE Transactions on Pattern Analysis & Machine Intelligence, 37(7), 1442–1454.

Févotte, C., & Cemgil, A. T. (2009). Nonnegative matrix factorizations as probabilistic inference in composite models. In: 17th European Signal Processing Conference. IEEE, 2009, 1913–1917.

Févotte, C., & Idier, J. (2011). Algorithms for nonnegative matrix factorization with the $$\beta $$-divergence. Neural Computation, 23(9), 2421–2456.

Févotte, C., Bertin, N., & Durrieu, J.-L. (2009). Nonnegative matrix factorization with the itakura-saito divergence: With application to music analysis. Neural Computation, 21(3), 793–830. https://doi.org/10.1162/neco.2008.04-08-771.

Fujisawa, H., & Eguchi, S. (2008). Robust parameter estimation with a small bias against heavy contamination. Journal of Multivariate Analysis, 99(9), 2053–2081. https://doi.org/10.1016/j.jmva.2008.02.004.

Kanamori, T., & Fujisawa, H. (2015). Robust estimation under heavy contamination using unnormalized models. Biometrika, 102(3), 559–572.

Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by nonnegative matrix factorization. Nature, 401, 788–791.

Lee, D. D., & Seung, H. S. (2001). “Algorithms for non-negative matrix factorization,” In: Advances in Neural Information Processing Systems, pp. 556–562.

Machida, K., & Takenouchi, T. (2015). Non-negative matrix factorization based on $$\gamma $$-divergence. In :International Joint Conference on Neural Networks (IJCNN) . IEEE, pp. 1–6.

Minka, T. (2005). Divergence measures and message passing. Technical report, Microsoft Research.

Yang, Z., & Oja, E. (2011). Unified development of multiplicative algorithms for linear and quadratic nonnegative matrix factorization. IEEE Transactions on Neural Networks, 22(12), 1878–1891.