Statistical modeling of multivariate loess properties in Taiyuan using regular vine copula with optimized tree structure

Transportation Geotechnics - Tập 41 - Trang 101025 - 2023
Dongdong Yan1, Tengyuan Zhao1, Ling Xu1, Lu Zuo1, Han Wen2, Jie Ren2
1School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
2Taiyuan Design Institute of China Railway Engineering Design and Consulting Group Co., Ltd, Taiyuan, Shanxi Province, China

Tài liệu tham khảo

Liu, 1985 Kulhawy FH, Mayne PW. Manual on estimating soil properties for foundation design; 1990. Ching, 2012, Corrigendum: Modeling parameters of structured clays as a multivariate normal distribution, Can Geotech J, 49, 1447, 10.1139/cgj-2012-0396 Xu, 2020, Probabilistic evaluation of loess landslide impact using multivariate model, Landslides, 18, 1011, 10.1007/s10346-020-01521-4 Phoon, 2008 Zhou, 2022, Effect of Normal Transformation Methods on Performance of Multivariate Normal Distribution, ASCE-ASME J Risk Uncertainty Eng Syst, Part A: Civ Eng, 8, 04021074, 10.1061/AJRUA6.0001198 Gong, 2017, Optimization of site investigation program for improved statistical characterization of geotechnical property based on random field theory, Bull Eng Geol Environ, 76, 1021, 10.1007/s10064-016-0869-3 Gong, 2019, Probabilistic analysis and design of stabilizing piles in slope considering stratigraphic uncertainty, Eng Geol, 259, 10.1016/j.enggeo.2019.105162 Bardhan, 2022, Probabilistic slope stability analysis of Heavy-haul freight corridor using a hybrid machine learning paradigm, Transp Geotech, 37, 10.1016/j.trgeo.2022.100815 Zou, 2019, Improving a thermal conductivity model of unsaturated soils based on multivariate distribution analysis, Acta Geotech, 14, 2007, 10.1007/s11440-019-00837-3 Burnham, 2004, Multimodel inference: understanding AIC and BIC in model selection, Sociol Methods Res, 33, 261, 10.1177/0049124104268644 Prästings, 2016, Multivariate approach in reliability-based design of a sheet pile wall, Transp Geotech, 7, 1, 10.1016/j.trgeo.2016.03.001 Ching, 2012, Modeling parameters of structured clays as a multivariate normal distribution, Can Geotech J, 49, 522, 10.1139/t2012-015 Ching, 2019, Multivariate probability distribution for some intact rock properties, Can Geotech J, 56, 1080, 10.1139/cgj-2018-0175 Zhang, 2020, Multivariate probability distribution of Shanghai clay properties, Eng Geol, 273, 10.1016/j.enggeo.2020.105675 Ching, 2020, Constructing a Site-Specific Multivariate Probability Distribution Using Sparse, Incomplete, and Spatially Variable (MUSIC-X) Data, J Eng Mech, 146, 04020061, 10.1061/(ASCE)EM.1943-7889.0001779 Li, 2020, Loess genesis and worldwide distribution, Earth-Sci Rev, 201 Bedford, 2001, Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines, Ann Math Articial Intell, 32, 245, 10.1023/A:1016725902970 Joe, 2011 Czado, 2019 Sohrabian, 2021, Geostatistical prediction through convex combination of Archimedean copulas, Spatial Statistics, 41, 10.1016/j.spasta.2020.100488 Tang, 2020, Modeling multivariate cross-correlated geotechnical random fields using vine copulas for slope reliability analysis, Comput Geotech, 127, 10.1016/j.compgeo.2020.103784 Momeni, 2021, Reliability analysis and risk assessment of deep excavations using random-set finite element method and event tree technique, Transp Geotech, 29, 10.1016/j.trgeo.2021.100560 Lü, 2020, Modeling multivariate distribution of multiple soil parameters using vine copula model, Comput Geotech, 118, 10.1016/j.compgeo.2019.103340 Sharma, 2021, Stochastic seepage and slope stability analysis using vine-copula based multivariate random field approach: Consideration to non-Gaussian spatial and cross-dependence structure of hydraulic parameters, Comput Geotech, 130, 10.1016/j.compgeo.2020.103918 Prakash, 2021, Probabilistic analysis of soil-water characteristic curve using limited data, App Math Model, 89, 752, 10.1016/j.apm.2020.08.023 Wang, 2020, Vine Copula-Based Dependence Modeling of Multivariate Ground-Motion Intensity Measures and the Impact on Probabilistic Seismic Slope Displacement Hazard Analysis, Bull Seismol Soc Am, 110, 2967, 10.1785/0120190244 Li, 2015, Bivariate distribution of shear strength parameters using copulas and its impact on geotechnical system reliability, Comput Geotech, 68, 184, 10.1016/j.compgeo.2015.04.002 Min, 2010, Bayesian Inference for Multivariate Copulas Using Pair-Copula Constructions, J Financ Economet, 8, 511, 10.1093/jjfinec/nbp031 Sklar, 1959, Fonctions de repartition an dimensions et leurs marges, Publ Inst Statist Univ Paris, 8, 229 Akaike, 1974, A new look at the statistical model identification, IEEE Trans Autom Control, 19, 716, 10.1109/TAC.1974.1100705 Konishi S, Kitagawa G. Information criteria and statistical modeling; 2008. Shemyakin, 2017 Kendall MG. Rank correlation methods; 1948. Bedford, 2002, Vines–a new graphical model for dependent random variables, Ann Stat, 30, 1031, 10.1214/aos/1031689016 Dissmann, 2013, Selecting and estimating regular vine copulae and application to financial returns, Comput Stat Data Anal, 59, 52, 10.1016/j.csda.2012.08.010 Arabas, 2017, Pyvinecopulib: high performance algorithms for vine copula modeling, Python library Dag Tjøstheim, Håkon Otneim, Bard Støve, Chapter 4 - Local Gaussian correlation and dependence. Statistical Modeling Using Local Gaussian Approximation 2022, Pages 87-134. Derbyshire, 1995, Collapsible Loess on the Loess Plateau of China, vol 468