Statistical modeling of multivariate loess properties in Taiyuan using regular vine copula with optimized tree structure
Tài liệu tham khảo
Liu, 1985
Kulhawy FH, Mayne PW. Manual on estimating soil properties for foundation design; 1990.
Ching, 2012, Corrigendum: Modeling parameters of structured clays as a multivariate normal distribution, Can Geotech J, 49, 1447, 10.1139/cgj-2012-0396
Xu, 2020, Probabilistic evaluation of loess landslide impact using multivariate model, Landslides, 18, 1011, 10.1007/s10346-020-01521-4
Phoon, 2008
Zhou, 2022, Effect of Normal Transformation Methods on Performance of Multivariate Normal Distribution, ASCE-ASME J Risk Uncertainty Eng Syst, Part A: Civ Eng, 8, 04021074, 10.1061/AJRUA6.0001198
Gong, 2017, Optimization of site investigation program for improved statistical characterization of geotechnical property based on random field theory, Bull Eng Geol Environ, 76, 1021, 10.1007/s10064-016-0869-3
Gong, 2019, Probabilistic analysis and design of stabilizing piles in slope considering stratigraphic uncertainty, Eng Geol, 259, 10.1016/j.enggeo.2019.105162
Bardhan, 2022, Probabilistic slope stability analysis of Heavy-haul freight corridor using a hybrid machine learning paradigm, Transp Geotech, 37, 10.1016/j.trgeo.2022.100815
Zou, 2019, Improving a thermal conductivity model of unsaturated soils based on multivariate distribution analysis, Acta Geotech, 14, 2007, 10.1007/s11440-019-00837-3
Burnham, 2004, Multimodel inference: understanding AIC and BIC in model selection, Sociol Methods Res, 33, 261, 10.1177/0049124104268644
Prästings, 2016, Multivariate approach in reliability-based design of a sheet pile wall, Transp Geotech, 7, 1, 10.1016/j.trgeo.2016.03.001
Ching, 2012, Modeling parameters of structured clays as a multivariate normal distribution, Can Geotech J, 49, 522, 10.1139/t2012-015
Ching, 2019, Multivariate probability distribution for some intact rock properties, Can Geotech J, 56, 1080, 10.1139/cgj-2018-0175
Zhang, 2020, Multivariate probability distribution of Shanghai clay properties, Eng Geol, 273, 10.1016/j.enggeo.2020.105675
Ching, 2020, Constructing a Site-Specific Multivariate Probability Distribution Using Sparse, Incomplete, and Spatially Variable (MUSIC-X) Data, J Eng Mech, 146, 04020061, 10.1061/(ASCE)EM.1943-7889.0001779
Li, 2020, Loess genesis and worldwide distribution, Earth-Sci Rev, 201
Bedford, 2001, Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines, Ann Math Articial Intell, 32, 245, 10.1023/A:1016725902970
Joe, 2011
Czado, 2019
Sohrabian, 2021, Geostatistical prediction through convex combination of Archimedean copulas, Spatial Statistics, 41, 10.1016/j.spasta.2020.100488
Tang, 2020, Modeling multivariate cross-correlated geotechnical random fields using vine copulas for slope reliability analysis, Comput Geotech, 127, 10.1016/j.compgeo.2020.103784
Momeni, 2021, Reliability analysis and risk assessment of deep excavations using random-set finite element method and event tree technique, Transp Geotech, 29, 10.1016/j.trgeo.2021.100560
Lü, 2020, Modeling multivariate distribution of multiple soil parameters using vine copula model, Comput Geotech, 118, 10.1016/j.compgeo.2019.103340
Sharma, 2021, Stochastic seepage and slope stability analysis using vine-copula based multivariate random field approach: Consideration to non-Gaussian spatial and cross-dependence structure of hydraulic parameters, Comput Geotech, 130, 10.1016/j.compgeo.2020.103918
Prakash, 2021, Probabilistic analysis of soil-water characteristic curve using limited data, App Math Model, 89, 752, 10.1016/j.apm.2020.08.023
Wang, 2020, Vine Copula-Based Dependence Modeling of Multivariate Ground-Motion Intensity Measures and the Impact on Probabilistic Seismic Slope Displacement Hazard Analysis, Bull Seismol Soc Am, 110, 2967, 10.1785/0120190244
Li, 2015, Bivariate distribution of shear strength parameters using copulas and its impact on geotechnical system reliability, Comput Geotech, 68, 184, 10.1016/j.compgeo.2015.04.002
Min, 2010, Bayesian Inference for Multivariate Copulas Using Pair-Copula Constructions, J Financ Economet, 8, 511, 10.1093/jjfinec/nbp031
Sklar, 1959, Fonctions de repartition an dimensions et leurs marges, Publ Inst Statist Univ Paris, 8, 229
Akaike, 1974, A new look at the statistical model identification, IEEE Trans Autom Control, 19, 716, 10.1109/TAC.1974.1100705
Konishi S, Kitagawa G. Information criteria and statistical modeling; 2008.
Shemyakin, 2017
Kendall MG. Rank correlation methods; 1948.
Bedford, 2002, Vines–a new graphical model for dependent random variables, Ann Stat, 30, 1031, 10.1214/aos/1031689016
Dissmann, 2013, Selecting and estimating regular vine copulae and application to financial returns, Comput Stat Data Anal, 59, 52, 10.1016/j.csda.2012.08.010
Arabas, 2017, Pyvinecopulib: high performance algorithms for vine copula modeling, Python library
Dag Tjøstheim, Håkon Otneim, Bard Støve, Chapter 4 - Local Gaussian correlation and dependence. Statistical Modeling Using Local Gaussian Approximation 2022, Pages 87-134.
Derbyshire, 1995, Collapsible Loess on the Loess Plateau of China, vol 468