Statistical estimation for reflected skew processes
Tóm tắt
In this note, we construct estimators for the parameters that rule the law of reflected skewed diffusion processes. The convergence properties of these estimators rely on the ergodic properties of these processes.
Tài liệu tham khảo
Barlow M, Burdzy K, Kaspi H, Mandelbaum A (2000) Variably skewed Brownian motion. Electron Commun Probab 5: 57–66 (electronic)
Basawa I, Rao B (1980) Statistical inference for stochastic processes. Academic Press, London
Bhattacharya RN (1982) On the functional central limit theorem and the law of the iterared logarithm for Markov processes. Z Wahrscheinlichkeitstheorie verw Gebiete 60: 185–201
Bordes L, Delmas C, Vandekerkhove P (2006) Semiparametric estimation of a two-component mixture model where one component is known. Scand J Stat 33(4): 733–752
Bosq D, Davydov Yu (1999) Local time and density estimation in continuous time. Math Methods Stat 2(1): 22–45
Fukushima M, Ōshima Y, Takeda M (1994) Dirichlet forms and symmetric Markov processes, de Gruyter Studies in Mathematics, vol 19. Walter de Gruyter and Co, Berlin
Gihman II, Skorohod AV (1972) Stochastic differential equations. Springer-Verlag, New York. Translated from the Russian by Kenneth Wickwire, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 72
Lejay A (2006) On the constructions of the skew Brownian motion. Probab Surv 3: 413–466 (Electronic)
Martinez M (2004) Interprétations probabilistes d’opérateurs sous forme divergence et analyse de méthodes numériques probabilistes associées, Ph.D. thesis, Université de Marseille
Ouknine Y (1990) Le “Skew-Brownian motion” et les processus qui en dérivent. Teor Veroyatnost i Primenen 35(1): 173–179
Revuz D, Yor M (1991) Continuous martingales and Brownian motion. Springer-Verlag, Berlin
Rogers LCG, Williams D (2000) Diffusions, Markov processes, and martingales, vol 2. Cambridge Mathematical Library, Cambridge University Press, Cambridge. Itô calculus, Reprint of the second edition (1994)