Statistical estimation for reflected skew processes

Springer Science and Business Media LLC - Tập 13 - Trang 231-248 - 2010
Olivier Bardou1, Miguel Martinez2
1Laboratoire de Probabilités et Modèles Aléatoires, UMR 7599, Université Pierre et Marie Curie and GDF SUEZ, Paris, France
2Laboratoire d’Analyse et de Mathématiques Appliquées (LAMA), UMR 8050, Université Paris-Est Marne-La-Vallée, Université de Marne-la-Vallée, Marne-la-Vallée Cedex 2, France

Tóm tắt

In this note, we construct estimators for the parameters that rule the law of  reflected skewed diffusion processes. The convergence properties of these estimators rely on the ergodic properties of these processes.

Tài liệu tham khảo

Barlow M, Burdzy K, Kaspi H, Mandelbaum A (2000) Variably skewed Brownian motion. Electron Commun Probab 5: 57–66 (electronic) Basawa I, Rao B (1980) Statistical inference for stochastic processes. Academic Press, London Bhattacharya RN (1982) On the functional central limit theorem and the law of the iterared logarithm for Markov processes. Z Wahrscheinlichkeitstheorie verw Gebiete 60: 185–201 Bordes L, Delmas C, Vandekerkhove P (2006) Semiparametric estimation of a two-component mixture model where one component is known. Scand J Stat 33(4): 733–752 Bosq D, Davydov Yu (1999) Local time and density estimation in continuous time. Math Methods Stat 2(1): 22–45 Fukushima M, Ōshima Y, Takeda M (1994) Dirichlet forms and symmetric Markov processes, de Gruyter Studies in Mathematics, vol 19. Walter de Gruyter and Co, Berlin Gihman II, Skorohod AV (1972) Stochastic differential equations. Springer-Verlag, New York. Translated from the Russian by Kenneth Wickwire, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 72 Lejay A (2006) On the constructions of the skew Brownian motion. Probab Surv 3: 413–466 (Electronic) Martinez M (2004) Interprétations probabilistes d’opérateurs sous forme divergence et analyse de méthodes numériques probabilistes associées, Ph.D. thesis, Université de Marseille Ouknine Y (1990) Le “Skew-Brownian motion” et les processus qui en dérivent. Teor Veroyatnost i Primenen 35(1): 173–179 Revuz D, Yor M (1991) Continuous martingales and Brownian motion. Springer-Verlag, Berlin Rogers LCG, Williams D (2000) Diffusions, Markov processes, and martingales, vol 2. Cambridge Mathematical Library, Cambridge University Press, Cambridge. Itô calculus, Reprint of the second edition (1994)