Statistical decision for extremes

Trabajos de estadistica y de investigacion operativa - Tập 26 Số 1-3 - Trang 433-471 - 1975
J. Tiago de Oliveira1
1Center of Applied Mathematics (I.A.C.), Faculty of Sciences, Lisbon

Tóm tắt

Từ khóa


Tài liệu tham khảo

S. M. Berman (1964): Limit theorems for the maximum term in a stationary sequence,Ann. Math. Stat., vol. 35.

H. Cramer (1946):Mathematical Methods of Statistics, Princeton Univ. Press.

F. Downton (1966): Linear estimates of parameters in extreme value distribution,Technom, vol. 8.

Satya Dubey (1967): Some percentile estimators for Weibull parameters,Technom, vol. 9.

Satya Dubey (1967a): On some permissible estimators of the location parameter of the Weibull and certain other distributions,Technom., vol. 9.

E. J. Gumbel (1961): Multivariate extremal distributions,Bull. Inst. Int. Stat. 33e sess. 2e livr., Paris.

E. J. Gumbel (1965): A quick estimation of the parameters in Fréchet distribution,Rev. Int. Stat. Inst., vol. 33.

E. J. Gumbel (1966): Two systems of bivariate extremal distributions,Bull. Int. Stat. Inst., vol. 41.

M. V. Johns Jr. and G. J. Liebermann (1966): An exact asymptotically efficient confidence bound for reliability in the case of Weibull distribution,Technom, vol. 8.

M. L. Juncosa (1968): On the distributions of the minimum of a sequence of mutually independent random variables,Duke Math. J., vol. 16.

J. Lieblein and M. Zellen (1956): Statistical investigations of the fatique life of deep-grove ball bearings,J. Res. Nat. Bur. Stand., vol. 37.

N. R. Mann (1968): Point and interval estimations procedures for the two-parameter Weibull and extreme-value distributions,Technom, vol. 10.

J. T. Mexia (1967–1968): Studies on the extreme double exponential distribution, II Sequential estimation and testing for the location parameter of Gumbel distribution,Univ. Lisboa. Rev. Fac. Cienc., A (2), vol. XII.

G.F. Newell (1964): Asymptotic extremes for dependent random variables,Ann. Math. Stat., vol. 35.

G. M. Panchang and V. P. Aggawall (1962): Peak flow estimation by the method of maximum likelihood,Techn. Mem. ML02. Central Water and Power Research Station, Poona

D. Passos Coelho and T. Gil (1963): Studies on the extremen double exponential distribution, I—The location parameter,Univ. Lisboa Rev. Fac. Ciênc. (2), vol. X.

J. Pickands III (1969): Asymptotic properties of the maximum of a stationary Gaussian process,Trans. Amer. Math. Soc., vol. 149.

J. Pickands III (1969a): Upcrossing probabilities for stationary Gaussian process,Trans. Amer. Math. Soc., vol. 149.

E.C. Posner, E.R. Rodemich, J.C. Ashlock and Sandra Lurie (1969): Application of an estimator of high efficiency in bivariate extreme volue theory,J. Ann. Stat. Anoc., vol. 64.

J. Tiago de Oliverra (1963): Decision results for the parameters of the extreme value (Gumbel) distribution based on the mean and standard deviation,Trab. Estad. e Inv. Operat., vol. XIV.

J. Tiago de Oliveira (1965): Statistical decision for bivariate extremes,Port. Math., vol. 25.

J. Tiago de Oliveira (1965): Optimality of grade correlation,An. Fac. Cienc. Porto, vol. XLVII.

J. Tiago de Oliveira (1966): Quasi-linearly invariant prediction,Ann. Math. Stat., vol. 37.

J. Tiago de Oliveira (1968): Efficiency evaluation for quasi-linearly invariant predictors,Rev. Belge Stat. etRech. Operat., vol. 9.

J. Tiago de Oliveira (1969): Biextremal distributions; Statistical decision,Trab. Estad. e Inv. Oper., vol. XX.

J. Tiago de Oliveira (1971): A new model of bivariate extremes; statistical decision,Studi di Probabilitá, Statistica e Ricerca Operativa in onore di G. Pompilli, Roma.

J. Tiago de Oliveira (1972): Statistics for Gumbel and Fréchet distributions,Structural Safety and Reliability, Pergamon Press, N. Y.

J. Tiago de Oliveira (1973): Quasi-linear discrimination,Discriminant Analysis and Applications, Academic Press.

J. Tiago de Oliveira (1974): Bivariate and multivariate extreme distributions—to be publ.

J. Tiago de Oliveira and S. B. Littauer (1972): Mean square invariant forecasters for the Weibull and Gumbel distributions,Reliability Testing and Reliability Evaluation NATO conference.

G. S. Watson (1954): Extreme values in samples form dependent stationary stochastic processes,Ann. Math. Stat., vol. 25.