Statistical characterization of sedimentation velocity of natural particles
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alger, G.R., 1964. Terminal fall velocity of particles of irregular shapes as affected by surface area. Ph.D. thesis.
Anderson, 1986, Sediment transport by wind: Toward a general model, Geol. Soc. Am. Bull., 97, 523, 10.1130/0016-7606(1986)97<523:STBWTA>2.0.CO;2
Baas, 2019
Baddock, 2013, Aeolian dust as a transport hazard, Atmos. Environ., 71, 7, 10.1016/j.atmosenv.2013.01.042
Bagheri, 2016, On the drag of freely falling non-spherical particles, Powder Technol., 301, 526, 10.1016/j.powtec.2016.06.015
Briggs, 1962, The hydraulic shape of sand particles, J. Sediment. Res., 32, 645
Brown, 2003, Sphere drag and settling velocity revisited, J. Environ. Eng., 129, 222, 10.1061/(ASCE)0733-9372(2003)129:3(222)
Bruno, 2018, Windblown sand along railway infrastructures: a review of challenges and mitigation measures, J. Wind Eng. Ind. Aerodyn., 177, 340, 10.1016/j.jweia.2018.04.021
Chen, 2001, Aerodynamic and geometric diameter of airborne particles, J. Sediment. Res., 71, 365, 10.1306/2DC4094A-0E47-11D7-8643000102C1865D
Chen, 2002, Aerodynamic and geometric diameter of airborne particles: Reply, J. Sediment. Res., 72, 442, 10.1306/102201720442
Clift, 1971, Motion of entrained particles in gas streams, Can. J. Chem. Eng., 49, 439, 10.1002/cjce.5450490403
Clift, R., Grace, J.R., Weber, M.E., 2005. Bubbles, Drops, and Particles. Courier corporation ed.
Corey, A.T., 1949. Influence of shape on the fall velocity of sand grains. Msc thesis.
Cox, 1965, The steady motion of a particle of arbitrary shape at small reynolds numbers, J. Fluid Mech., 23, 625, 10.1017/S0022112065001593
Cui, 1983, Settling velocities of natural sand grains in air, J. Sediment. Petrol.
Dietrich, 1982, Settling velocity of natural particles, Water Resour. Res., 18, 1615, 10.1029/WR018i006p01615
Dioguardi, 2017, A new one-equation model of fluid drag for irregularly shaped particles valid over a wide range of reynolds number, J. Geophys. Res.: Solid Earth, 123, 144, 10.1002/2017JB014926
Ellis, 2013, vol. 11
Farrell, 2013, Estimates of the Schmidt Number for vertical flux distributions of wind-blown sand, J. Coastal Res., 165, 1289, 10.2112/SI65-218.1
Farrell, 2015, A new relationship between grain size and fall (settling) velocity in air, Prog. Phys. Geogr., 39, 361, 10.1177/0309133314562442
Ferguson, 2004, A simple universal equation for grain settling velocity, J. Sediment. Res., 74, 933, 10.1306/051204740933
Fernandes, 2019, Investigating the role of deposition on the size distribution of near-surface dust flux during erosion events, Aeolian Res., 37, 46, 10.1016/j.aeolia.2019.02.002
Ganser, 1993, A rational approach to drag prediction of spherical and nonspherical particles, Powder Technol., 77, 143, 10.1016/0032-5910(93)80051-B
Genest, 2007, Everything you always wanted to know about copula modeling but were afraid to ask, J. Hydrol. Eng. (ASCE), 12, 347, 10.1061/(ASCE)1084-0699(2007)12:4(347)
Genest, C., Nešlehová, J., 2014. Copulas and copula models. In: Wiley StatsRef: Statistics Reference Online. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118445112.stat07523.
Gillies, 2013, vol. 11
Griffin, 2007, Atmospheric movement of microorganisms in clouds of desert dust and implications for human health, Clin. Microbiol. Rev., 3, 459, 10.1128/CMR.00039-06
Haider, 1989, Drag coefficient and terminal velocity of spherical and nonspherical particles, Powder Technol., 58, 63, 10.1016/0032-5910(89)80008-7
Holze, 2014, Accelerated lifetime modeling on the basis of wind tunnel analysis and sand storm aging, Energy Procedia, 49, 1692, 10.1016/j.egypro.2014.03.178
Ishihara, 1952, On the effect of sand storm in controlling the mouth of the kiku river, Bulletins - Disaster Prevention Research Institute, Kyoto University, 2, 1
ISO14688-1:2017, 2017. Geotechnical investigation and testing – identification and classification of soil – part 1: Identification and description.
Jerolmack, 2006, Spatial grain size sorting in eolian ripples and estimation of wind conditions on planetary surfaces: application to meridiani planum, mars, J. Geophys. Res.: Planets, 111, 10.1029/2005JE002544
Ji, 2004, A convection-diffusion CFD model for aeolian particle transport, Int. J. Numer. Meth. Fluids, 45, 797, 10.1002/fld.724
Johnson, 1999, Flow past a sphere up to a reynolds number of 300, J. Fluid Mech., 378, 19, 10.1017/S0022112098003206
Kok, 2009, A comprehensive numerical model of steady state saltation (comsalt), J. Geophys. Res., 114, D17204, 10.1029/2009JD011702
Kok, 2012, The physics of wind-blown sand and dust, Rep. Prog. Phys., 75, 10.1088/0034-4885/75/10/106901
Le Roux, 2002, Aerodynamic and geometric diameter of airborne particles: discussion, J. Sediment. Res., 72, 441, 10.1306/110801720441
Le Roux, 2005, Determination of drag coefficients in measuring particle diameters: discussion, J. Sediment. Res., 75, 520, 10.2110/jsr.2005.041
Le Roux, 2014, Fall velocity of multi-shaped clasts, J. Volcanol. Geoth. Res., 130, 10.1016/j.jvolgeores.2014.11.001
Li, 2018, Blowing dust and highway safety in the southwestern united states: characteristics of dust emission “hotspots” and management implications, Sci. Total Environ., 621, 1023, 10.1016/j.scitotenv.2017.10.124
Loth, 2008, Drag of non-spherical solid particles of regular and irregular shape, Powder Technol., 182, 342, 10.1016/j.powtec.2007.06.001
Malcolm, 1991, Measurements in an air settling tube of the terminal velocity distribution of soil material, J. Geophys. Res., 96, 15275, 10.1029/91JD01198
Marticorena, B., Formenti, P., 2013. Fundamentals of aeolian sediment transport: long-range transport of dust. vol. 11. pp. 64–84. https://doi.org/10.1016/B978-0-12-374739-6.00298-0.
Mass, 1989, Major volcanic eruptions and climate: a critical evaluation, J. Clim., 2, 566, 10.1175/1520-0442(1989)002<0566:MVEACA>2.0.CO;2
McCormick, 1995, Atmospheric effects of the Mt Pinatubo eruption, Nature, 373, 399, 10.1038/373399a0
McTainsh, 2013, Fundamentals of aeolian sediment transport: aeolian sediments, vol. 11
Middleton, 2017, Desert dust hazards: a global review, Aeolian Res., 24, 53, 10.1016/j.aeolia.2016.12.001
Nelsen, 2007
Nickling, W.G., McKenna Neuman, C., 2009. Geomorphology of Desert Environments. Springer: Netherlands. chapter Aeolian sediment transport. pp. 517–555. https://doi.org/10.1007/978-1-4020-5719-9.
Paz, 2015, Numerical study of the impact of windblown sand particles on a high-speed train, J. Wind Eng. Ind. Aerodyn., 145, 87, 10.1016/j.jweia.2015.06.008
Pischiutta, M., 2012. Mathematical and numerical modelling of the evolution of mixtures of sand in aeolian dunes. Ph.D. thesis.
Preziosi, 2015, A multiphase first order model for non-equilibrium sand erosion, transport and sedimentation, Appl. Math. Lett., 45, 69, 10.1016/j.aml.2015.01.011
Pye, 2009
Raffaele, 2016, Windblown sand saltation: a statistical approach to fluid threshold shear velocity, Aeolian Res., 23, 79, 10.1016/j.aeolia.2016.10.002
Rivas, 2018, Evidence for regional aeolian transport of freshwater micrometazoans in arid regions, Limnol. Oceanogr. Lett., 3, 320, 10.1002/lol2.10072
Romanovskiy, 1966, A study of the fall velocity of coarse sediment, Soviet Hydrol.: Selected Papers, 47
Rouse, H., 1938. Fluid Mechanics for Hydraulic Engineers.
Rouse, 1938
Sadegh, 2017, Multivariate copula analysis toolbox (mvcat): describing dependence and underlying uncertainty using a bayesian framework, Water Resour. Res., 53, 10.1002/2016WR020242
Schulz, 1954
Shao, 2008
Stokes, 1851, vol. 9
Stringham, G.E., Simons, D.B., Guy, H.P., 1969. The behavior of large particles falling in quiescent liquids. https://doi.org/10.3133/pp562C.
Sundborg, 1955, Meteorological and climatological conditions for the genesis of aeolian sediments, Geogr. Ann., 37, 94
Tomboulides, 2000, Numerical investigation of transitional and weak turbulent flow past a sphere, J. Fluid Mech., 416, 45, 10.1017/S0022112000008880
Tran-Cong, 2004, Drag coefficients of irregularly shaped particles, Powder Technol., 139, 21, 10.1016/j.powtec.2003.10.002
Udo, 2011, Application of rouse’s sediment concentration profile to aeolian transport: is the suspension system for sand transport in air the same as that in water?, J. Coastal Res., 2079
Valence, 2015, The physics of Aeolian sand transport, C.R. Phys., 16, 105, 10.1016/j.crhy.2015.01.006
Wang, 2014, Saltation of non-spherical sand particles, PLoS ONE, 9
Wang, 2018, New simple correlation formula for the drag coefficient of calcareous sand particles of highly irregular shape, Powder Technol., 326, 379, 10.1016/j.powtec.2017.12.004
White, 1997, Aeolian behavior of dust in a simulated martian environment, J. Geophys. Res.: Planets, 102, 25629, 10.1029/97JE01753
Wilde, R.H., 1952. Effect of shape on the fall-velocity of grand-sized particles.
Wilson, 1979, The influence of shape on the atmospheric settling velocity of volcanic ash particles, Earth Planet. Sci. Lett., 44, 311, 10.1016/0012-821X(79)90179-1
Yizhaq, 2015, Longevity of aeolian megaripples, Earth Planet. Sci. Lett., 422, 28, 10.1016/j.epsl.2015.04.004
Zio, 2013