Arbitrage thống kê: phương pháp đầu tư theo yếu tố

Springer Science and Business Media LLC - Tập 45 - Trang 1295-1331 - 2023
Erdinc Akyildirim1,2,3, Ahmet Goncu4, Alper Hekimoglu5, Duc Khuong Nguyen6,7, Ahmet Sensoy8,9
1School of Management, Bradford University, Bradford, United Kingdom
2Department of Management, Bogazici University, Istanbul, Turkey
3Department of Banking and Finance, University of Zurich, Zurich, Switzerland
4Department of Management Engineering, Istanbul Technical University, İstanbul, Turkey
5Model Validation Division, European Investment Bank, Luxembourg city, Luxembourg
6De Vinci Research Center, Léonard de Vinci Pôle Universitaire, Paris La Défense, France
7International School, Vietnam National University, Hanoi, Vietnam
8Faculty of Business Administration, Bilkent University, Ankara, Turkey
9Adnan Kassar School of Business, Lebanese American University, Beirut, Lebanon

Tóm tắt

Chúng tôi giới thiệu một mô hình thời gian liên tục cho giá cổ phiếu dưới dạng yếu tố tổng quát với độ nhiễu được điều khiển bởi quá trình chuyển động Brownian hình học. Chúng tôi suy diễn phân phối xác suất tiếp cận lý thuyết cho các chiến lược dài-hạn cho đến rào cản và các điều kiện cho arbitrage thống kê. Chúng tôi tối ưu hóa các chiến lược arbitrage thống kê của mình dựa trên lợi nhuận chiết khấu kỳ vọng và tỷ lệ Sharpe. Các kết quả bootstrapping cho thấy phân phối xác suất tiếp cận lý thuyết là một biểu diễn thực tế của các xác suất tiếp cận thực nghiệm. Chúng tôi kiểm tra hiệu suất thực nghiệm của các chiến lược dài-hạn cho đến rào cản bằng cách sử dụng cổ phiếu Mỹ và chứng minh rằng các quy tắc giao dịch của chúng tôi có thể tạo ra lợi nhuận arbitrage thống kê.

Từ khóa

#arbitrage thống kê #đầu tư theo yếu tố #quá trình Brownian hình học #phân phối xác suất #chiến lược giao dịch

Tài liệu tham khảo

Akyildirim E, Fabozzi FJ, Goncu A, Sensoy A (2022) Statistical arbitrage in jump-diffusion models with compound poisson processes. Ann Oper Res 313:1357–1371 Avellaneda M, Lee JH (2010) Statistical arbitrage in the us equities market. Quant Financ 10:761–782 Bertram WK (2009) Optimal trading strategies for Itô diffusion processes. Phys A 388:2865–2873 Bertram WK (2010) Analytical solutions for optimal statistical arbitrage trading. Phys A 389:2234–2243 Bondarenko O (2003) Statistical arbitrage and securities prices. Rev Financ Stud 16:875–919 Christodoulakis GA (2002) Sharpe style analysis in the msci sector portfolios: a monte carlo integration approach. Oper Res Int J 2:123–137 Cummins M, Bucca A (2012) Quantitative spread trading on crude oil and refined products markets. Quanti Financ 12:1857–1875 Do B, Faff R (2010) Does simple pairs trading still work? Financ Anal J 66:83–95 Elliott RJ, Van Der Hoek J, Malcolm WP (2005) Pairs trading. Quant Financ 5:271–276 Fama EF, French KR (1993) Common risk factors in the returns on stocks and bonds. J Financ Econ 33:3–56 Focardi SM, Fabozzi FJ, Mitov IK (2016) A new approach to statistical arbitrage: strategies based on dynamic factor models of prices and their performance. J Bank Financ 65:134–155 Gatev E, Goetzmann WN, Rouwenhorst KG (2006) Pairs trading: performance of a relative-value arbitrage rule. Rev Financ Stud 19:797–827 Giesecke K, Smelov D (2013) Exact sampling of jump diffusions. Oper Res 61:894–907 Göncü A (2015) Statistical arbitrage in the black-scholes framework. Quant Financ 15:1489–1499 Göncü A, Akyildirim E (2017) Statistical arbitrage in the multi-asset black-scholes economy. Ann Financ Econ 12:1750004 Helmes K, Röhl S, Stockbridge RH (2001) Computing moments of the exit time distribution for markov processes by linear programming. Oper Res 49:516–530 Hogan S, Jarrow R, Teo M, Warachka M (2004) Testing market efficiency using statistical arbitrage with applications to momentum and value strategies. J Financ Econ 73:525–565 Huck N (2019) Large data sets and machine learning: applications to statistical arbitrage. Eur J Oper Res 278:330–342 Huck N, Afawubo K (2015) Pairs trading and selection methods: is cointegration superior? Appl Econ 47:599–613 Jabali O, Leus R, Van Woensel T, De Kok T (2015) Self-imposed time windows in vehicle routing problems. OR Spectrum 37:331–352 Jarrow R, Teo M, Tse YK, Warachka M (2012) An improved test for statistical arbitrage. J Financ Mark 15:47–80 Jarrow R, Li H, Ye X, Hu M (2019) Exploring mispricing in the term structure of CDS spreads. Rev Financ 23:161–198 Knoll J, Stübinger J, Grottke M (2019) Exploiting social media with higher-order factorization machines: statistical arbitrage on high-frequency data of the S &P 500. Quant Financ 19:571–585 Kraft H, Steffensen M (2006) Portfolio problems stopping at first hitting time with application to default risk. Math Methods Oper Res 63:123–150 Krauss C, Do XA, Huck N (2017) Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S &P 500. Eur J Oper Res 259:689–702 Locatelli M (2001) Convergence and first hitting time of simulated annealing algorithms for continuous global optimization. Math Methods Oper Res 54:171–199 Lutkebohmert E, Sester J (2020) Robust statistical arbitrage strategies. Quantitative Finance (forthcoming) Mayordomo S, Pena JI, Romo J (2014) Testing for statistical arbitrage in credit derivatives markets. J Empir Financ 26:59–75 Nasekin S, Härdle WK (2019) Model-driven statistical arbitrage on letf option markets. Quant Financ 19:1817–1837 Page E (1965) On monte carlo methods in congestion problems: Ii. simulation of queuing systems. Oper Res 13:300–305 Revuz D, Yor M (2004) Continuous Martingales and Brownian Motion. Grundlehren der mathematischen Wissenschaften. Springer, Berlin Rossier Y, Troyon M, Liebling TM (1986) Probabilistic exchange algorithms and euclidean traveling salesman problems. Oper Res Spektrum 8:151–164 Shreve SE (2004) Stochastic Calculus for Finance II: Continuous-Time Models. Springer, New York Stübinger J (2019) Statistical arbitrage with optimal causal paths on high-frequency data of the S &P 500. Quant Financ 19:921–935 Stübinger J, Endres S (2018) Pairs trading with a mean-reverting jump-diffusion model on high-frequency data. Quant Financ 18:1735–1751 Stübinger J, Mangold B, Krauss C (2018) Statistical arbitrage with vine copulas. Quant Financ 18:1831–1849 Wang X, Sloan IH (2011) Quasi-monte carlo methods in financial engineering: an equivalence principle and dimension reduction. Oper Res 59:80–95 White H (2000) A reality check for data snooping. Econometrica 68:1097–1126 Yoshitomi Y, Yamaguchi R (2003) A genetic algorithm and the monte carlo method for stochastic job-shop scheduling. Int Trans Oper Res 10:577–596 Zhu S, Fukushima M (2009) Worst-case conditional value-at-risk with application to robust portfolio management. Oper Res 57:1155–1168