Phân Tích Thống Kê và Thông Minh Hành Vi Độ Nhớt của Nanolubricant Lai MgO-MWCNT (25–75%)/10W40 Sử Dụng Mô Hình Mạng Nơ-ron Nhân Tạo và Phương Pháp Bề Mặt Phản Ứng

Arabian Journal for Science and Engineering - Tập 47 - Trang 1117-1127 - 2021
Mohammad Hemmat Esfe1, Milad Goodarzi1, Saeed Esfandeh1
1Department of Mechanical Engineering, Imam Hossein University, Tehran, Iran

Tóm tắt

Nghiên cứu này xem xét độ nhớt của nanolubricant lai MWCNT-MgO (25–75%)/10W40 trong khoảng tỷ lệ thể tích rắn (SVF) từ 0–1%, khoảng nhiệt độ từ 5–55 °C và khoảng tốc độ cắt từ 6665 đến 11,997 s−1 bằng cách sử dụng mô hình mạng nơ-ron nhân tạo và phương pháp bề mặt phản ứng. Nghiên cứu này được thực hiện nhằm giảm chi phí cho các nghiên cứu thực nghiệm thông qua việc sử dụng các phương pháp thông minh. Cấu trúc tối ưu nhất cho mạng nơ-ron nhân tạo đa lớp đã được lựa chọn thông qua việc nghiên cứu khoảng 400 cấu trúc khác nhau với số lượng nơ-ron khác nhau trong mỗi lớp, các hàm truyền tải khác nhau, v.v. Nghiên cứu này cũng trình bày một mối tương quan mới dựa trên toán học sử dụng phương pháp bề mặt phản ứng để ước lượng độ nhớt của nanolubricant hiện tại, lần đầu tiên. Giá trị R2 của mối tương quan toán học đề xuất và dữ liệu được dự đoán bởi mạng nơ-ron lần lượt là 0.9321 và 0.9999, có thể được coi là chính xác tốt. Cuối cùng, các kết quả của ANN và mối tương quan đề xuất đã được so sánh với các kết quả thực nghiệm, và sai số dự đoán cao nhất xảy ra ở nhiệt độ 35 °C và SVF 1%. Dựa trên kết quả ở tất cả các điều kiện, sự phù hợp của dữ liệu thực nghiệm với kết quả dự đoán của mạng nơ-ron cao hơn so với mối tương quan đề xuất.

Từ khóa

#độ nhớt #MWCNT-MgO #nanolubricant lai #mạng nơ-ron nhân tạo #phương pháp bề mặt phản ứng #mô hình hóa thông minh

Tài liệu tham khảo

Asadi, M.; Asadi, A.: Dynamic viscosity of MWCNT/ZnO–engine oil hybrid nanofluid: an experimental investigation and new correlation in different temperatures and solid concentrations. Int. Commun. Heat Mass Transfer 76, 41–45 (2016) Xia, W.; Zhao, J.; Wu, H.; Jiao, S.; Zhao, X.; Zhang, X., et al.: Analysis of oil-in-water based nanolubricants with varying mass fractions of oil and TiO2 nanoparticles. Wear 396, 162–171 (2018) Sanukrishna, S.S.; Prakash, M.J.: Experimental studies on thermal and rheological behaviour of TiO2-PAG nanolubricant for refrigeration system. Int. J. Refrig 86, 356–372 (2018) Kotia, A.; Borkakoti, S.; Ghosh, S.K.: Wear and performance analysis of a 4-stroke diesel engine employing nanolubricants. Particuology 37, 54–63 (2018) Vakili-Nezhaad, G.R.; Dorany, A.: Investigation of the effect of multiwalled carbon nanotubes on the viscosity index of lube oil cuts. Chem. Eng. Commun. 196(9), 997–1007 (2009) Ahmadi, H.; Rashidi, A.; Nouralishahi, A.; Mohtasebi, S.S.: Preparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant. Int. Commun. Heat Mass Transfer 46, 142–147 (2013) Rashidi, A.; Ahmadi, H.; Mohtasebi, S.S.; Pourkhalil, M.: Thermal and rheological properties of oil-based nanofluids from different carbon nanostructures. Int. Commun. Heat Mass Transfer 48, 178–182 (2013) Eshaghi, A.; Mojab, M.: Hydrophilicity of Silica Nano-Porous Thin Films: Calc fects of multi-walled carbon nanotubes on rheological behavior of engine ination temperature effects. J. Nanostruct. 7(2), 127–133 (2017) Ehteram, H.R.; Abbasian Arani, A.A.; Sheikhzadeh, G.A.; Aghaei, A.; Malihi, A.R.: The effect of various conductivity and viscosity models considering Brownian motion on nanofluids mixed convection flow and heat transfer. Transp Phenom Nano Micro Scales 4(1), 19–28 (2016) Hamid, K.A.; Azmi, W.H.; Nabil, M.F.; Mamat, R.; Sharma, K.V.: Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2–SiO2 nanofluids. Int. J. Heat Mass Transf. 116, 1143–1152 (2018) Ghasemi, S.; Karimipour, A.: Experimental investigation of the effects of temperature and mass fraction on the dynamic viscosity of CuO-paraffin nanofluid. Appl. Therm. Eng. 128, 189–197 (2018) Minakov, A.V.; Rudyak, V.Y.; Pryazhnikov, M.I.: Systematic experimental study of the viscosity of nanofluids. Heat Trans. Eng. 42(12), 1024–1040 (2021) Moldoveanu, G.M.; Ibanescu, C.; Danu, M.; Minea, A.A.: Viscosity estimation of Al2O3, SiO2 nanofluids and their hybrid: an experimental study. J. Mol. Liq. 253, 188–196 (2018) Baghbani Arani, J.; Narooei, A.; Aghayari, R.; Maddah, H.: Nanofluid thermal conductivity prediction model based on artificial neural network. Transport Phenomena in Nano and Micro Scales 4(2), 41–46 (2016) Longo, G.A.; Zilio, C.; Ceseracciu, E.; Reggiani, M.: Application of artificial neural network (ANN) forthe prediction of thermal conductivity of oxide–water nanofluids. Nano Energy 1(2), 290–296 (2012) Sarafraz, M.M.; Hart, J.; Shrestha, E.; Arya, H.; Arjomandi, M.: Experimental thermal energy assessment of a liquid metal eutectic in a microchannel heat exchanger equipped with a (10 Hz/50 Hz) resonator. Appl. Therm. Eng. 148, 578–590 (2019) Sarafraz, M.M.; Arya, H.; Saeedi, M.; Ahmadi, D.: Flow boiling heat transfer to MgO-therminol 66 heat transfer fluid: experimental assessment and correlation development. Appl. Therm. Eng. 138, 552–562 (2018) Sarafraz, M.M.; Yang, B.; Pourmehran, O.; Arjomandi, M.; Ghomashchi, R.: Fluid and heat transfer characteristics of aqueous graphene nanoplatelet (GNP) nanofluid in a microchannel. Int. Commun. Heat Mass Transfer 107, 24–33 (2019) Peyghambarzadeh, S.M.; Sarafraz, M.M.; Vaeli, N.; Ameri, E.; Vatani, A.; Jamialahmadi, M.: Forced convective and subcooled flow boiling heat transfer to pure water and n-heptane in an annular heat exchanger. Ann. Nucl. Energy 53, 401–410 (2013) Sarafraz, M.M.; Safaei, M.R.; Goodarzi, M.; Yang, B.; Arjomandi, M.: Heat transfer analysis of Ga–In–Sn in a compact heat exchanger equipped with straight micro-passages. Int. J. Heat Mass Transf. 139, 675–684 (2019) Pourmehran, O.; Sarafraz, M.M.; Rahimi-Gorji, M.; Ganji, D.D.: Rheological behaviour of various metal-based nano-fluids between rotating discs: a new insight. J. Taiwan Inst. Chem. Eng. 88, 37–48 (2018) Sarafraz, M.M.; Arya, H.; Arjomandi, M.: Thermal and hydraulic analysis of a rectangular microchannel with gallium-copper oxide nano-suspension. J. Mol. Liq. 263, 382–389 (2018) Sarafraz, M.M.; Safaei, M.R.; Tian, Z.; Goodarzi, M.; Bandarra Filho, E.P.; Arjomandi, M.: Thermal assessment of nano-particulate graphene-water/ethylene glycol (WEG 60: 40) nano-suspension in a compact heat exchanger. Energies 12(10), 1929 (2019) FYousefi, F., & Amoozandeh, Z. : A new model to predict the densities of nanofluids using statistical mechanics and artificial intelligent plus principal component analysis. Chin. J. Chem. Eng. 25(9), 1273–1281 (2017) Bahiraei, M.; Khosravi, R.; Heshmatian, S.: Assessment and optimization of hydrothermal characteristics for a non-Newtonian nanofluid flow within miniaturized concentric-tube heat exchanger considering designer’s viewpoint. Appl. Therm. Eng. 123, 266–276 (2017) Barati-Harooni, A.; Najafi-Marghmaleki, A.; Mohebbi, A.; Mohammadi, A.H.: On the estimation of viscosities of Newtonian nanofluids. J. Mol. Liq. 241, 1079–1090 (2017) Motahari, K.; Moghaddam, M.A.; Moradian, M.: Experimental investigation and development of new correlation for influences of temperature and concentration on dynamic viscosity of MWCNT-SiO2 (20–80)/20W50 hybrid nano-lubricant. Chin. J. Chem. Eng. 26(1), 152–158 (2018) Moghaddam, M.A.; Motahari, K.: Experimental investigation, sensitivity analysis and modeling of rheological behavior of MWCNT-CuO (30–70)/SAE40 hybrid nano-lubricant. Appl. Therm. Eng. 123, 1419–1433 (2017) Zareie, A.; Akbari, M.: Hybrid nanoparticles effects on rheological behavior of water-EG coolant under different temperatures: an experimental study. J. Mol. Liq. 230, 408–414 (2017) Aghaei, A.; Khorasanizadeh, H.; Sheikhzadeh, G.A.: Measurement of the dynamic viscosity of hybrid engine oil-Cuo-MWCNT nanofluid, development of a practical viscosity correlation and utilizing the artificial neural network. Heat Mass Transf. 54(1), 151–161 (2018) Elcioglu, E.B.; Yazicioglu, A.G.; Turgut, A.; Anagun, A.S.: Experimental study and Taguchi Analysis on alumina-water nanofluid viscosity. Appl. Therm. Eng. 128, 973–981 (2018) Baranitharan, P.; Ramesh, K.; Sakthivel, R.: Measurement of performance and emission distinctiveness of Aegle marmelos seed cake pyrolysis oil/diesel/TBHQ opus powered in a DI diesel engine using ANN and RSM. Measurement 144, 366–380 (2019) Esfe, M.H.; Arani, A.A.A.; Rezaie, M.; Yan, W.M.; Karimipour, A.: Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int. Commun. Heat Mass Trans. 66, 189–195 (2015) Einstein, A.: Eine neue bestimmung der moleküldimensionen. Ann. Phys. 324(2), 289–306 (1906) Wang, X.; Xu, X.; Choi, S., et al.: Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Transfer 13(4), 474–480 (1999) De Bruijn, H.: The viscosity of suspensions of spherical particles (The fundamental η–c and φ relations). Recl. Trav. Chim. Pays-Bas 61(12), 863–874 (1942) Bahiraei, M.; Heshmatian, S.; Moayedi, H.: Artificial intelligence in the field of nanofluids: a review on applications and potential future directions. Powder Technol. 353, 276–301 (2019) Zhao, N.; Li, S.; Yang, J.: A review on nanofluids: data-driven modeling of thermalphysical properties and the application in automotive radiator. Renew. Sustain. Energy Rev. 66, 596–616 (2016) Ramezanizadeh, M.; Ahmadi, M.H.; Nazari, M.A.; Sadeghzadeh, M.; Chen, L.: A review on the utilized machine learning approaches for modeling the dynamic viscosity of nanofluids. Renew. Sustain. Energy Rev. 114, 109345 (2019) Vakili, M.; Khosrojerdi, S.; Aghajannezhad, P.; Yahyaei, M.: A hybrid artificial neural network-genetic algorithm modeling approach for viscosity estimation of graphene nanoplatelets nanofluid using experimental data. Int. Commun. Heat Mass Transfer 82, 40–48 (2017) Vakili, M.; Karami, M.; Delfani, S.; Khosrojerdi, S.: Experimental investigation and modeling of thermal radiative properties of f-CNTs nanofluid by artificial neural network with Levenberg–Marquardt algorithm. Int. Commun. Heat Mass Transfer 78, 224–230 (2016) Heidari, E.; Sobati, M.A.; Movahedirad, S.: Accurate prediction of nanofluid viscosity using a multilayer perceptron artificial neural network (MLP-ANN). Chemom. Intell. Lab. Syst. 155, 73–85 (2016) Alirezaie, A.; Saedodin, S.; Hemmat Esfe, M.; Rostamian, S.H.: Investigation of rheological behavior of MWCNT (COOH-functionalized)/MgO-engine oil hybrid nanofluids and modelling the results with artificial neural networks. J. Mol. Liq. 241, 173–181 (2017) Meybodi, M.K.; Daryasafar, A.; Koochi, M.M.; Moghadasi, J.; Meybodi, R.B.; Ghahfarokhi, A.K.: A novel correlation approach for viscosity prediction of water based nanofluids of Al2O3, TiO2, SiO2 and CuO. J. Taiwan Inst. Chem. Eng. 58, 19–27 (2016) Adio, S.A.; Mehrabi, M.; Sharifpur, M.; Meyer, J.P.: Experimental investigation and model development for effective viscosity of MgO–ethylene glycol nanofluids by using dimensional analysis, FCM-ANFIS and GA-PNN techniques. Int. Commun. Heat Mass Transfer 72, 71–83 (2016) Singh, R.; Sanchez, O.; Ghosh, S.; Kadimcherla, N.; Sen, S.; Balasubramanian, G.: Viscosity of magnetite–toluene nanofluids: dependence on temperature and nanoparticle concentration. Phys. Lett. A 379(40–41), 2641–2644 (2015) Esfahani, J.A.; Safaei, M.R.; Goharimanesh, M.; De Oliveira, L.R.; Goodarzi, M.; Shamshirband, S.; Bandarra Filho, E.P.: Comparison of experimental data, modelling and non-linear regression on transport properties of mineral oil based nanofluids. Powder Technol. 317, 458–470 (2017) Esfe, M.H.; Hajmohammad, M.H.: Thermal conductivity and viscosity optimization of nanodiamond-Co3O4/EG (40: 60) aqueous nanofluid using NSGA-II coupled with RSM. J. Mol. Liq. 238, 545–552 (2017) Karimipour, A.; Ghasemi, S.; Darvanjooghi, M.H.K.; Abdollahi, A.: A new correlation for estimating the thermal conductivity and dynamic viscosity of CuO/liquid paraffin nanofluid using neural network method. Int. Commun. Heat Mass Transfer 92, 90–99 (2018) Esfe, M.H.; Firouzi, M.; Rostamian, H.; Afrand, M.: Prediction and optimization of thermophysical properties of sftabilized Al2O3/antifreeze nanofluids using response surface methodology. J. Mol. Liq. 261, 14–20 (2018)