Statistical analysis of structural variations of benthic communities and testing the hypothesis of river continuum
Tóm tắt
Statistical methods for assessing the spatial distribution of benthic communities in different parts of watercourses have been considered as applied to lowland rivers of the Lower Volga region. The applicability domains are described for different response models, gradient analysis, and random skewers methods, which are used to analyze the distribution of aquatic organisms in bottom sediments. Stationarity and autocorrelation criteria for the description of generalized characteristics of macrozoobenthos communities are analyzed. The problems of identification of statistically significant isolated zones at whose boundaries the succession change of the species composition of aquatic organisms are discussed. The results of nonparametric dispersion analysis of species similarity matrices, the formation of dendrites, and the search for barriers between individual areas are given (based on Delaunay triangulation and Monmonier’s maximal-diversity algorithm).
Tài liệu tham khảo
Alimov, A.F., Elementy teorii funktsionirovaniya vodnykh ekosistem (Elements of the Theory of Aquatic Ecosystem Functioning), St. Petersburg: Nauka, 2001.
Bogatov, V.V., Combined concept of river ecosystem functioning, Vestnik DVO RAN, 1995, no. 3, pp. 51–61.
Jongman, R.H.G., ter Braak, C.J.F., and van Tongeren O.F.R., Analiz dannykh v ekologii soobshchestv i landshaftov (Data Analysis in Community and Landscape Ecology), Moscow: RASKhN, 1999.
Zinchenko, T.D., Ekologo-faunisticheskaya kharakteristika khironomid (Diptera, Chironomidae) malykh rek basseina Srednei i Nizhnei Volgi (atlas) (Ecological-Faunistic Characteristic of Chironomids (Diptera, Chironomidae) in Small Rivers in the Basins of the Middle and Lower Volga: Atlas), Tolyatti: Kassandra, 2011.
Shitikov, V.K., Zinchenko, T.D., and Rozenberg, G.S., Makroekologiya rechnykh soobshchestv: kontseptsii, metody, modeli (Macroecology of Riverine Communities: Concepts, Methods, Models), Tolyatti: Kassandra, 2012.
Shitikov, V.K., Rozenberg, G.S., and Zinchenko, T.D., Kolichestvennaya gidroekologiya: metody, kriterii, resheniya (Quantitative Hydroecology: Methods, Criteria, Solutions), Moscow: Nauka, 2005.
Anderson, M.J., A new method for non-parametric multivariate analysis of variance, Aust. J. Ecol., 2001, vol. 26, pp. 32–46.
Benda, L., Poff, L.R., Miller, D., et al., Network dynamics hypothesis: spatial and temporal organization of physical heterogeneity in rivers, BioScience, 2004, vol. 54, pp. 413–427.
Borcard, D., Legendre, P., Avois-Jacquet, C., et al., Dissecting the spatial structure of ecological data at multiple scales, Ecology, 2004, vol. 85, pp. 1826–1832.
Connor, E.F. and Simberloff, D., The assembly of species communities: chance or competition?, Ecology, 1979, vol. 60, pp. 1132–1140.
Dickey, D.A. and Fuller, W.A., Distribution of the estimators for autoregressive time series with a unit root, J. Am. Stat. Assoc., 1979, vol. 74, pp. 427–431.
Fisher, S.G., Barnes, J.R., and Minshall, G.W., Succession in streams, in Stream Ecology: Application and Testing of General Ecological Theory, New York: Plenum Press, 1983, pp. 7–27.
Guisan, A. and Thuillier, W., Predicting species distribution: offering more than simple habitats models, Ecol. Let., 2005, vol. 8, pp. 993–1009.
Huisman, J., Olff, H., and Fresco, L.F., A hierarchical set of models for species response analysis, J. Veget. Sci., 1993, vol. 4, pp. 37–46.
Ljung, G.M. and Box, G.E.P., On a measure of lack of fit in time series models, Biometrika, 1978, vol. 65, no. 2, pp. 297–303.
Manni, F., Guerard, E., and Heyer, E., Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by “Monmonier’s” “algorithm,” Hum. Biol., 2004, vol. 76, no. 2, pp. 173–190.
McGill, B.J., Strong and weak tests of macro-ecological theory, Oikos, 2003, vol. 102, pp. 679–685.
Montgomery, D.R., Process domains and the river continuum concept, J. Am. Water Resour. Assoc., 1999, vol. 35, pp. 397–410.
Oksanen, J. and Minchin, P.R., Continuum theory revisited: what shape are species responses along ecological gradients?, Ecol. Modell., 2002, vol. 157, pp. 119–129.
Perry, J.A. and Schaeffer, D.J., The longitudinal distributions of or riverine benthos: a river discontinuum?, Hydrobiologia, 1987, vol. 148, pp. 257–268.
Pielou, E.C., Probing multivariate data with random skewers: a preliminary to direct gradient analysts, Oikos, 1984, vol. 42, pp. 161–165.
Pillar, V.D., How sharp are classifications?, Ecology, 1999, vol. 80, no. 8, pp. 2508–2516.
Sokal, R.R. and Oden, N.L., Spatial autocorrelation in biology. 1. Methodology, Biol. J. Lin. Soc., 1978, vol. 10, pp. 199–228.
Thorp, J.H., Thoms, M.C., and DeLong, M.D., The riverine ecosystem synthesis: biocomplexity in river networks across space and time, Riv. Res. & Appl., 2006, vol. 22, pp. 123–147.
Townsend, C.R., The patch dynamics concept of stream community ecology, J. North Amer. Benthol. Soc., 1989, vol. 8, pp. 36–50.
Townsend, C.R., Scarsbrook, M.R., and Dolédec, S., Quantifying disturbance in streams: alternative measures of disturbance in relation to macroinvertebrate species traits and species richness, J. North Amer. Benthol. Soc., 1997, vol. 16, pp. 531–544.
Vannote, R.L., Minshall, G.W., Cummins, K.W., et al., The river continuum concept, Can. J. Fish. Aquat. Sci., 1980, vol. 37, pp. 130–137.
Yodzis, P., Competition, mortality, and community structure, in Community Ecology, Diamond, J. and Case, T., Eds. New York: Harper and Row, 1986.