Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer

Nicholas Hamilton1, Hyung Suk Kang2, Charles Meneveau3, Raúl Bayoán Cal1
1Portland State University 1 Department of Mechanical and Materials Engineering, , Portland, Oregon 97207, USA
2Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA#TAB#
3Johns Hopkins University 3 Department of Mechanical Engineering & CEAFM, , Baltimore, Maryland 21218, USA

Tóm tắt

For large wind farms, kinetic energy must be entrained from the flow above the wind turbines to replenish wakes and enable power extraction in the array. Various statistical features of turbulence causing vertical entrainment of mean-flow kinetic energy are studied using hot-wire velocimetry data taken in a model wind farm in a scaled wind tunnel experiment. Conditional statistics and spectral decompositions are employed to characterize the most relevant turbulent flow structures and determine their length-scales. Sweep and ejection events are shown to be the largest contributors to the vertical kinetic energy flux, although their relative contribution depends upon the location in the wake. Sweeps are shown to be dominant in the region above the wind turbine array. A spectral analysis of the data shows that large scales of the flow, about the size of the rotor diameter in length or larger, dominate the vertical entrainment. The flow is less incoherent below the array, causing decreased vertical fluxes there. The results show that improving the rate of vertical kinetic energy entrainment into wind turbine arrays is a standing challenge and would require modifying the large-scale structures of the flow. Such an optimization would in the future aid recovery of the wind turbine wake towards conditions corresponding to the undisturbed atmospheric boundary layer.

Từ khóa


Tài liệu tham khảo

1992, J. Wind Eng. Ind. Aerodyn., 39, 251, 10.1016/0167-6105(92)90551-K

2006, Wind Energy, 9, 39, 10.1002/we.189

2010, Phys. Fluids, 22, 015110, 10.1063/1.3291077

2010, J. Environ. Sustainable Energy, 2, 013106, 10.1063/1.3289735

2003, Wind turbine wake aerodynamics, Prog. Aerosp. Sci., 39, 467, 10.1016/S0376-0421(03)00078-2

1999, Renewable Energy, 18, 513, 10.1016/S0960-1481(98)00797-6

1980, Proceedings of the Third International Symposium on Wind Energy Systems, 431

2009, Boundary-Layer Meteorol., 132, 129, 10.1007/s10546-009-9380-8

1999, J. Wind Eng. Ind. Aerodyn., 80, 121, 10.1016/S0167-6105(98)00194-9

1980, J. Ind. Aerodyn., 5, 403, 10.1016/0167-6105(80)90044-6

1980, Proceedings of the Third International Symposium on Wind Energy Systems, 401

1999, J. Wind Eng. Ind. Aerodyn., 80, 169, 10.1016/S0167-6105(98)00126-3

1999, J. Wind Eng. Ind. Aerodyn., 80, 147, 10.1016/S0167-6105(98)00125-1

B. Sanderse, Energy Research Centre of the Netherlands, Report No. ECN-E-09-016, 2009.

2009, Wind Energy, 12, 431, 10.1002/we.348

2011, Boundary-Layer Meteorol., 138, 345, 10.1007/s10546-010-9569-x

1972, J. Fluid Mech., 55, 65, 10.1017/S002211207200165X

1972, J. Fluid Mech., 54, 39, 10.1017/S0022112072000515

2008, Exp. Fluids, 45, 111, 10.1007/s00348-008-0467-7

2010, Boundary-Layer Meteorol., 134, 269, 10.1007/s10546-009-9451-x

1979, J. Fluid Mech., 94, 673, 10.1017/S0022112079001245

1987, Fluid Dyn. Res., 2, 3, 10.1016/0169-5983(87)90013-X

2010, J. Fluid Mech., 658, 310, 10.1017/S0022112010001758

1981, J. Fluid Mech., 108, 363, 10.1017/S0022112081002164

1997, Boundary-Layer Meteorol., 83, 1, 10.1023/A:1000293516830

2006, Boundary-Layer Meteorol., 120, 367, 10.1007/s10546-006-9064-6

1982, Phys. Fluids, 25, 949, 10.1063/1.863848

2008, Phys. Fluids, 20, 065101, 10.1063/1.2919803

2010, J. Hydraul. Eng., 136, 143, 10.1061/(ASCE)HY.1943-7900.0000155

2004, Boundary-Layer Meteorol., 111, 565, 10.1023/B:BOUN.0000016576.05621.73

1987, Boundary-Layer Meteorol., 40, 127, 10.1007/BF00140072

2007, J. Atmos. Sci., 64, 2825, 10.1175/JAS3990.1

1988, Boundary-Layer Meteorol., 43, 345, 10.1007/BF00121712

2007, Water Resour. Res., 43, 5422, 10.1029/2006WR005583

1967, Phys. Fluids, 10, 855, 10.1063/1.1762200

2012, Wind Energy, 15, 733, 10.1002/we.501

2006, Exp. Fluids, 41, 309, 10.1007/s00348-006-0145-6

1979, Boundary-Layer Meteorol., 16, 213, 10.1007/BF02350512

1971, A First Course in Turbulence

1996, J. Wind Eng. Ind. Aerodyn., 62, 237, 10.1016/S0167-6105(96)00059-1

1996, J. Wind Eng. Ind. Aerodyn., 61, 71, 10.1016/0167-6105(95)00033-X

2004, J. Fluid Mech., 505, 179, 10.1017/S0022112004008389

2008, Environ. Res. Lett., 3, 015004, 10.1088/1748-9326/3/1/015004

1971, J. Fluid Mech., 48, 273, 10.1017/S0022112071001599

2003, J. Fluid Mech., 480, 129, 10.1017/S0022112002003579

2010, Wind Energy, 13, 459, 10.1002/we.367