Statistical Optimization of Poly-β-Hydroxybutyrate Biosynthesis Using the Spent Mushroom Substrate by Bacillus tequilensis PSR-2
Tóm tắt
Poly-β-hydroxybutyrate (PHB) belonging to the polyhydroxyalkanoates family is a natural polyester used as a biodegradable plastic for various commercial applications. In this study, soil samples from the vegetable oil processing industry were used to screen for PHB-producing bacteria using Sudan black B staining. Among the isolated bacteria, PHB positive PSR-2 isolate was chosen as a potent PHB producer. The phylogenetic tree revealed that the PSR-2 isolate has a high 16S rRNA gene sequence similarity of 99.9% with Bacillus tequilensis. The PHB content of 2.8 ± 0.09 g/L was produced by PSR-2 isolate in 48 h in a nutrient broth medium containing 1% glucose compared to the PHB production of 1.6 ± 0.08% by the reference strain, Bacillus circulans. Taguchi method was used to optimize PHB production using the alkali-pretreated spent mushroom substrate of sugarcane bagasse (SMS-SB) as an additional carbon substrate along with other energy sources. The optimized factors in the contribution of PHB production from the highest- to the lowest-ranking are as follows: alkali-pretreated SMS-SB, glucose, glycerol, peptone, ammonium chloride, and potassium dihydrogen phosphate at 30 ºC, pH 7.0, which resulted in the production of 12.4 ± 0.95 g/L PHB was higher than the predicted value of 11.59 g/L. The synthesized PHB was characterized using Ultraviolet–visible spectrophotometry, Fourier transform infrared spectrometry, differential scanning calorimetry, thermogravimetric analysis, nuclear magnetic resonance spectroscopy, and gas chromatography-mass spectrometry. The results revealed the presence of hydroxyl (–OH), methyl (–CH3), methine (=CH–), methylene (–CH2–) and ester carbonyl (>C=O) groups, which confirmed the PHB structure. Thus, alkali-pretreated SMS-SB plays a significant role as an energy substrate for the production of PHB. This gives the knowledge to utilize cost-effective lignocellulosic agro-waste materials as a feedstock for the sustainable production of biodegradable PHB for many biomedical applications.
Tài liệu tham khảo
Brandl, H., Gross, R.A., Lenz, R.W., Fuller, R.C.: Plastics from bacteria and for bacteria: poly(beta-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters. Adv. Biochem. Eng. Biotechnol. 41, 77–93 (1990)
Gadgil, B.S.T., Killi, N., Rathna, G.V.N.: Polyhydroxyalkanoates as biomaterials. Med. Chem. Commun. 8, 1774–1787 (2017)
Rydz, J., Sikorska, W., Kyulavska, M., Christova, D.: Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development. Int. J. Mol. Sci. 16, 564–596 (2014)
Bugnicourt, E., Cinelli, P., Lazzeri, A., Alvarez, V.: Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym. Lett. 8, 791–808 (2014)
Howells, E.R.: Opportunities in biotechnology for the chemical industry. Chem. Ind. (Lond) 7, 508–551 (1982)
Jendrossek, D.: Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J. Bacteriol. 191, 3195–3202 (2009)
Li, Z., Yang, J., Loh, X.J.: Polyhydroxyalkanoates: opening doors for a sustainable future. NPG Asia Mater. 8, e265 (2016)
Koller, M.: Linking food industry to “green plastics”—polyhydroxyalkanoate (PHA) biopolyesters from agro-industrial by-products for securing food safety. Appl. Food Biotechnol. 6, 1–6 (2019)
Brigham, C.J., Riedel, S.L.: The potential of polyhydroxyalkanoate production from food wastes. Appl. Food Biotechnol. 6, 7–18 (2019)
Cinelli, P., Mallegni, N., Gigante, V., Montanari, A., Seggiani, M., Coltelli, M.B., Bronco, S., Lazzeri, A.: Biocomposites based on polyhydroxyalkanoates and natural fibres from renewable byproducts. Appl. Food Biotechnol. 6, 35–43 (2019)
Favaro, L., Basaglia, M., Rodriguez, J.E.G., Morelli, A., Ibraheem, O., Pizzocchero, V., Casella, S.: Bacterial production of PHAs from lipid-rich by-products. Appl. Food Biotechnol. 6, 45–52 (2019)
Kumar, P., Kim, B.S.: Paracoccus sp. strain LL1 as a single cell factory for the conversion of waste cooking oil to polyhydroxyalkanoates and carotenoids. Appl. Food Biotechnol. 6, 53–60 (2019)
Rebocho, A.T., Pereira, J.R., Freitas, F., Neves, L.A., Alves, V.D., Sevrin, C., Grandfils, C., Reis, M.A.M.: Production of medium-chain length polyhydroxyalkanoates by Pseudomonas citronellolis grown in apple pulp waste. Appl. Food Biotechnol. 6, 71–82 (2019)
Bozorg, A., Vossoughi, M., Kazemi, A., Alemzadeh, I.: Optimal medium composition to enhance poly-β-hydroxybutyrate production by Ralstonia eutropha using cane molasses as sole carbon source. Appl. Food Biotechnol. 2, 39–47 (2015)
Pernicova, I., Enev, V., Marova, I., Obruca, S.: Interconnection of waste chicken feather biodegradation and keratinase and mcl-PHA production employing Pseudomonas putida KT2440. Appl. Food Biotechnol. 6, 83–90 (2019)
Koller, M., Shahzad, K., Braunegg, G.: Waste streams of the animal-processing industry as feedstocks to produce polyhydroxyalkanoate biopolyesters. Appl. Food Biotechnol. 5, 193–203 (2018)
Koller, M., Marsalek, L.: Principles of glycerol-based polyhydroxyalkanoate production. Appl. Food Biotechnol. 2, 3–10 (2015)
Khosravi-Darani, K., Mokhtari, Z.B., Amai, T., Tanaka, K.: Microbial production of poly(hydroxybutyrate) from C1 carbon sources. Appl. Microbiol. Biotechnol. 97, 1407–1424 (2013)
Mokhtari-Hosseini, Z.B., Vasheghani-Farahani, E., Heidarzadeh-Vazifekhoran, A., Shojaosadati, S.A., Karimzadeh, R., Khosravi-Darani, K.: Statistical media optimization for growth and PHB production from methanol by a methylotrophic bacterium. Bioresour. Technol. 100, 2436–2443 (2009)
Khosravi-Darani, K., Yazdian, F., Babapour, F., Amirsadeghi, A.R.: Poly(3-hydroxybutyrate) production from natural gas by a methanotroph native bacterium in a bubble column bioreactor. Chem. Biochem. Eng. Q. 33, 69–77 (2019)
Shahhosseini, S., Sadeghi, M.T., Khosravi-Darani, K.: Simulation and model validation of batch PHB production process using Ralstonia eutropha. Iran. J. Chem. & Chem. Eng. 22, 35–41 (2003)
Khosravi-Darani, K., Vasheghani-Farahani, E., Shojaosadati, S.A.: Application of the Plackett-Burman statistical design to optimize poly(β-hydroxybutyrate) production by Ralstonia eutropha in batch culture. Iran. J. Biotechnol. 1, 155–161 (2003)
Khosravi-Darani, K., Vasheghani-Farahani, E., Shojaosadati, S.A., Yamini, Y.: Effect of process variables on supercritical fluid disruption of Ralstonia eutropha cells for poly(R-hydroxybutyrate) recovery. Biotechnol. Prog. 20, 1757–1765 (2004)
Khosravi-Darani, K., Vasheghani-Farahani, E., Shojaosadati, S.A.: Application of the Taguchi design for production of poly(β-hydroxybutyrate) by Ralstonia eutropha. Iran. J. Chem. Chem. Eng. 23, 131–136 (2004)
Penkhrue, W., Jendrossek. D., Khanongnuch, C., Pathom-aree, W., Aizawa T., Behrens, R.L., Lumyong, S.: Response surface method for polyhydroxybutyrate (PHB) bioplastic accumulation in Bacillus drentensis BP17 using pineapple peel. PLoS ONE, 15, e0230443 (2020)
Paula, F.S., Tatti, E., Abram, F., Wilson, J., O’Flaherty, V.: Stabilization of spent mushroom substrate for application as a plant growth-promoting organic amendment. J. Environ. Manag. 196, 476–486 (2017)
Rinker, D.L.: Spent mushroom substrate uses: technology and applications. In Edible and medicinal mushrooms: technology and applications (First edition), pp. 427–454. Wiley, New York (2017)
Mostafa, Y.S., Alrumman, S.A., Otaif, K.A., Alamri, S.A., Mostafa, M.S., Sahlabji, T.: Production and characterization of bioplastic of polyhydroxybutyrate accumulating Erythrobacter aquimaris isolated from Mangrove rhizosphere. Molecules 25, 179 (2020)
Mohandas, S.P., Balan, L., Lekshmi, N., Cubelio, S.S., Philip, R., Singh, I.S.B.: Production and characterization of polyhydroxybutyrate from Vibrio harveyi MCCB 284 utilizing glycerol as carbon source. J. Appl. Microbiol. 122, 698–707 (2016)
El-malek, F.A., Khairy, H., Farag, A., Omar, S.: The sustainability of microbial bioplastics, production and applications. Int. J. Biol. Macromol. 157, 319–328 (2020)
Yang, M., Baral, N.R., Simmons, B.A., Mortimer, J.C., Shih, P.M., Scown, C.D.: Accumulation of high-value bioproducts in planta can improve the economics of advanced biofuels. Proc. Natl. Acad. Sci. U.S.A. 117, 8639–8648 (2020)
Mohapatra, S., Maity, S., Dash, H.R., Das, S., Pattnaik, S., Rath, C.C., Samantaray, D.: Bacillus and biopolymer: prospects and challenges. Biochem. Biophys. Rep. 12, 206–213 (2017)
Annamalai, N., Al-Battashi, H., Al-Bahry, S., Sivakumar, N.: Biorefinery production of poly-3-hydroxybutyrate using waste office paper hydrolysate as feedstock for microbial fermentation. J. Biotechnol. 265, 25–30 (2018)
Al-Battashi, H.S., Annamalai, N., Sivakumar, N., Al-Bahry, S., Tripathi, B.N., Nguyen, Q.D., Gupta, V.K.: Lignocellulosic biomass (LCB): a potential alternative biorefinery feedstock for polyhydroxyalkanoates production. Rev. Environ. Sci. Biotechnol. 18, 183–205 (2019)
Abdol-Fotouh, D., Hassan, M.A., Shokry, H., Roig, A., Azab, M.S., Kashyout, A.E.B.: Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Sci. Rep. 10, 3491 (2020)
Kawaguchi, H., Ogino, C., Kondo, A.: Microbial conversion of biomass into bio-based polymers. Bioresour. Technol. 245, 1664–1673 (2017)
Byrom, J., Byrom, D.: Biopol–nature’s plastic. NCBE Newsl. 9–11 (1991)
Law, J.H., Slepecky, R.A.: Assay of poly-β-hydroxybutyric acid. J. Bacteriol. 82, 33–36 (1961)
Hassan, M.A., Amara, A.A., Abuelhamd, A.T., Haroun, B.: Leucocytes show improvement growth on PHA polymer surface. Pak. J. Pharm. Sci. 23, 332–336 (2010)
Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T., Williams, S.T.: Bergey’s manual of determinative bacteriology. Williams & Wilkins, Baltimore (1994)
Kovaks, N.: Identification of Pseudomonas pyncyanea by the oxidase reaction. Nature (Lond) 178, 703 (1956)
Graham, P.H., Parker, C.A.: Diagnostic features in the characterization of the root-nodule bacteria of legumes. Plant Soil 20, 383–396 (1964)
Naik, P.R., Raman, G., Narayanan, K.B., Sakthivel, N.: Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiol. 8, 1–14 (2008)
Wang, Y., Zhou, X.H., Hu, J.J., Zhang, Q.G.: Study on extraction and identification of PHB from H2 production fermentation residue by photosynthetic bacteria. Adv. Mater. Res. 518–523, 108–115 (2012)
Weisburg, W.G., Barns, S.M., Pelletier, D.A., Lane, D.J.: 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703 (1991)
Hassan, M.A., Tamer, T.M., Rageh, A.A., Abou-Zeid, A.M., El-Zaher, E.H.F.A., Kenawy. E.R.: Insight into multidrug-resistant microorganisms from microbial infected diabetic foot ulcers. Diabetes Metab. Syndr. Clin. Res. Rev. 13, 1261–1270 (2019)
Kumar, S., Stecher, G., Tamura, K.: MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016)
Zhu, H.J., Liu, J.H., Sun, L.F., Hu, Z.F., Qiao, J.J.: Combined alkali and acid pretreatment of spent mushroom substrate for reducing sugar and biofertilizer production. Bioresour. Technol. 136, 257–266 (2013)
Dence, C.W.: The determination of lignin. In: Lin, S.Y., Dence, A., Carlton, W. (eds.) Methods in Lignin Chemistry, pp. 33–61. Springer, Berlin (1992)
Deschatelets, L., Yu, E.K.C.: A simple pentose assay for biomass conversion studies. Appl. Microbiol. Biotechnol. 24, 379–385 (1986)
Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)
Updegraff, D.M.: Utilization of cellulose from waste paper by Myrothecium verrucaria. Biotechnol. Bioeng. 13, 77–97 (1971)
Grömping, U.: R package DoE.base for factorial experiments. J. Stat. Softw. 85, 1–41 (2018)
R Core Team.: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2018). https://www.r-project.org/
RStudio Team.: RStudio: Integrated development for R. RStudio, PBC, Boston, MA (2020). https://rstudio.com/
Bhuwal, A.K., Singh, G., Aggarwal, N.K., Goyal, V., Yadav, A.: Isolation and screening of polyhydroxyalkanoates producing bacteria from pulp, paper, and cardboard industry wastes. Int. J. Biomater. 2013, 752821 (2013)
Ansari, S., Fatma, T.: Cyanobacterial polyhydroxybutyrate (PHB): Screening, optimization and characterization. PLoS ONE 11, 1–20 (2016)
Hamamura, N., Olson, S.H., Ward, D.M., Inskeep, W.P.: Microbial population dynamics associated with crude-oil biodegradation in diverse soils. Appl. Environ. Microbiol. 72, 6316–6324 (2006)
Sabirova, J.: Polyhydroxyalkanoates produced by hydrocarbon-degrading bacteria. In: Timmis, K.N. (ed.) Handbook of Hydrocarbon and Lipid Microbiology, pp. 2981–2894. Springer, Berlin (2010)
Reyes, G.D., So, R.S., Ulep, M.M.: Isolation, screening and identification of bacteria for poly-β-hydroxybutyrate (PHB) production. Studies Environ. Sci. 66, 737–748 (1997)
Gatson, J.W., Benz, B.F., Chandrasekaran, C., Satomi, M., Venkateswaran, K., Hart, M.E.: Bacillus tequilensis sp. nov., isolated from a 2000-year-old Mexican shaft-tomb, is closely related to Bacillus subtilis. Int. J. Syst. Evol. Microbiol. 56, 1475–1484 (2006)
Aarti, C., Khusro, A.: Discovery of polygalacturonase producing Bacillus tequilensis strain armati using 16S rRNA gene sequencing. Asian J. Pharm. Clin. Res. 8, 58–62 (2015)
Janda, J.M., Abbott, S.L.: 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol. 45, 2761–2764 (2007)
Bavykin, S.G., Mikhailovich, V.M., Zakharyev, V.M., Lysov, Y.P., Kelly, J.J., Alferov, O.S., Gavin, I.M., Kukhtin, A.V., Jackman, J., Stahl, D.A., Chandler, D., Mirzabekov, A.D.: Discrimination of Bacillus anthracis and closely related microorganisms by analysis of 16S and 23S rRNA with oligonucleotide microarray. Chem. Biol. Interact. 171, 212–235 (2008)
Alarfaj, A.A., Arshad, M., Sholkamy, E.N., Munusamy, M.A.: Extraction and characterization of polyhydroxybutyrates (PHB) from Bacillus thuringiensis KSADL127 isolated from mangrove environments of Saudi Arabia. Braz. Arch. Biol. Technol. 58, 781–788 (2015)
Loow, Y.L., Wu, T.Y., Jahim, J.M., Mohammad, A.W., Teoh, W.H.: Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23, 1491–1520 (2016)
Bensah, E.C., Mensah, M.: Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations. Int. J. Chem. Eng. 2013, 719607 (2013)
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686 (2005)
Nuchdang, S., Thongtus, V., Khemkhao, M., Kirdponpattara, S., Moore, E.J., Setiabudi, H.D.B., Phalakornkule, C.: Enhanced production of reducing sugars from paragrass using microwave-assisted alkaline pretreatment. Biomass Conv. Bioref. (2020). https://doi.org/10.1007/s13399-020-00624-1
Saratale, R.G., Saratale, G.D., Cho, S.K., Kim, D.S., Ghodake, G.S., Kadam, A., Kumar, G., Bharagava, R.N., Banu, R., Shin, H.S.: Pretreatment of kenaf (Hibiscus cannabinus L.) biomass feedstock for polyhydroxybutyrate (PHB) production and characterization. Bioresour. Technol. 282, 75–80 (2019)
Getachew, A., Woldesenbet, F.: Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material. BMC Res. Notes 9, 509 (2016)
Wang, X., Xia, K., Yang, X., Tang, C.: Growth strategy of microbes on mixed carbon sources. Nat. Commun. 10, 1279 (2019)
Dalsasso, R.R., Pavan, F.A., Bordignon, S.E., de Aragao, G.M.F., Poletto, P.: Polyhydroxybutyrate (PHB) production by Cupriavidus necator from sugarcane vinasse and molasses as mixed substrate. Process Biochem. 85, 12–18 (2019)
Werlang, E.B., Moraes, L.B., Muller, M.V.G., Julich, J., Corbellini, V.A., Neves, F.D.F., de Souza, D., Benitez, L.B., Schneider, R.D.D.: Polyhydroxybutyrate (PHB) production via bioconversion using Bacillus pumilus in liquid phase cultivation of the biomass of Arthrospira platensis hydrolysate as a carbon source. Waste Biomass Valor (2020). https://doi.org/10.1007/s12649-020-01213-z
Hassan, M.A., Bakhiet, E.K., Hussein, H.R., Ali, S.G.: Statistical optimization studies for polyhydroxybutyrate (PHB) production by novel Bacillus subtilis using agricultural and industrial wastes. Int. J. Environ. Sci. Technol. 16, 3497–3512 (2019)
Hassan, M.A., Bakhiet, E.K., Ali, S.G., Hussien, H.R.: Production and characterization of polyhydroxybutyrate (PHB) produced by Bacillus sp. isolated from Egypt. J. Appl. Pharm. Sci. 6, 46–51 (2016)
Fei, N.C., Mehat, N.M., Kamaruddin, S.: Practical applications of Taguchi method for optimization of processing parameters for plastic injection moulding: a retrospective review. ISRN Ind. Eng. 2013, 462174 (2013)
Aramvash, A., Shahabi, Z.A., Aghjeh, S.D., Ghafari, M.D.: Statistical physical and nutrient optimization of bioplastic polyhydroxybutyrate production by Cupriavidus necator. Int. J. Environ. Sci. Technol. 12, 2307–2316 (2015)
Mori, T., Tsai, S.C.: Taguchi Methods: Benefits, Impacts, Mathematics, Statistics, and Applications. ASME Press, New York (2011)
Kacker, R.N., Lagergren, E.S., Filliben, J.J.: Taguchi’s orthogonal arrays are classical designs of experiments. J. Res. Natl. Inst. Stand. Technol. 96, 577–591 (1991)
Roy, R.K.: A primer on the Taguchi method, 2nd ed. In Society of Manufacturing Engineers, MI, USA (2010)
Wei, Y.H., Chen, W.C., Huang, C.K., Wu, H.S., Sun, Y.M., Lo, C.W., Janarthanan, O.M.: Screening and evaluation of polyhydroxybutyrate producing strains from indigenous isolate Cupriavidus taiwanensis strains. Int. J. Mol. Sci. 12, 252–265 (2011)
Weisberg, J.F., Weisberg, S.: An R Companion to Applied Regression, 3rd edn. Sage, Thousand Oaks (2019)
Israni, N., Shivakumar, S.: Polyhydroxyalkanoate (PHA) biosynthesis from directly valorized ragi husk and sesame oil cake by Bacillus megaterium strain Ti3: statistical optimization and characterization. Int. J. Biol. Macromol. 148, 20–30 (2020)
Madhusoodanan, G., Selvaraj, S., Sarvajna, S.K., Hariharapura, R.C., Somashekhar, D.M.: Steering of β oxidation intermediates to polyhydroxyalkanoate copolymer biosynthesis by fatty acids and inhibitors using Taguchi design. Int. J. Environ. Sci. Technol. 17, 2853–2864 (2020)
Suryawanshi, S.S., Sarje, S.S., Loni, P.C., Bhujbal, S., Kamble, P.P.: Bioconversion of sugarcane molasses into bioplastic (polyhydroxybutyrate) using Bacillus cereus 2156 under statistically optimized culture conditions. Anal. Chem. Lett. 10, 80–92 (2020)
Gouda, M.K., Swellam, A.E., Omar, S.H.: Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol. Res. 156, 201–207 (2001)
Ugur, A., Sahin, N., Beyatli, Y.: Accumulation of poly-b-hydroxybutyrate in Streptomyces species during growth with different nitrogen sources. Turk. J. Biol. 26, 171–174 (2002)
Sayyed, R.Z., Wani, S.J., Alarfaj, A.A., Syed, A., El-Enshasy, H.A.: Production, purification and evaluation of biodegradation potential of PHB depolymerase of Stenotrophomonas sp. RZS7. PLoS ONE 15, e0220095 (2020)
Nair, A.M., Annamalai, K., Kannan, S.K., Kuppusamy, S.: Characterization of polyhydroxyalkanoates produced by Bacillus subtilis isolated from soil samples. Malaya J. Biosci. 1, 8–12 (2014)
Mohapatra, S., Sarkar, B., Samantaray, D.P., Daware, A., Maity, S., Pattnaik, S., Bhattacharjee, S.: Bioconversion of fish solid waste into PHB using Bacillus subtilis based submerged fermentation process. Environ. Technol. 38, 3201–3208 (2017)
Pradhan, S., Borah, A.J., Poddar, M.K., Dikshit, P.K., Rohidas, L., Moholkar, V.S.: Microbial production, ultrasound-assisted extraction and characterization of biopolymer polyhydroxybutyrate (PHB) from terrestrial (P. hysterophorus) and aquatic (E. crassipes) invasive weeds. Bioresour. Technol. 242, 304–310 (2017)
Sabarinathan, D., Chandrika, S.P., Venkatraman, P., Easwaran, M., Sureka, C.S., Preethi, K.: Production of polyhydroxybutyrate (PHB) from Pseudomonas plecoglossicida and its application towards cancer detection. Inform. Med. Unlocked 11, 61–67 (2018)
Yu, I., Ebrahimi, T., Hatzikiriakos, S.G., Mehrkhodavandi, P.: Star-shaped PHB–PLA block copolymers: immortal polymerization with dinuclear indium catalysts. Dalton Trans. 44, 14248–14254 (2015)
Mayeli, N., Motamedi, H., Heidarizadeh, F.: Production of polyhydroxybutyrate by Bacillus axaraqunsis BIPC01 using petrochemical wastewater as carbon source. Braz. Arch. Biol. Technol. 58, 643–650 (2015)
El-Sheekh, M.M., El-Abd, M.A., El-Diwany, A.I., Ismail, A.M.S., Mohsen, S., Omar, T.H.: Poly-3-hydroxybutyrate (PHB) production by Bacillus flexus ME-77 using some industrial wastes. Rend. Lincei 26, 109–119 (2015)
Juengert, J.R., Bresan, S., Jendrossek, D.: Determination of polyhydroxybutyrate (PHB) content in Ralstonia eutropha using gas chromatography and Nile red staining. Bio-Protoc. 8, 2748 (2018)
Riis, V., Mai, W.: Gas chromatographic determination of poly-β-hydroxybutyric acid in microbial biomass after hydrochloric acid propanolysis. J. Chromatogr. A 445, 285–289 (1988)