Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author)

Statistical Science - Tập 16 Số 3 - 2001
Leo Breiman

Tóm tắt

Từ khóa


Tài liệu tham khảo

Gifi, A. (1990). Nonlinear Multivariate Analy sis. Wiley, New York.

Wahba, G. (1990). Spline Models for Observational Data. SIAM, Philadelphia.

Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984). Classification and Regression Trees. Wadsworth, Belmont, CA.

McCullagh, P. and Nelder, J. (1989). Generalized Linear Models. Chapman and Hall, London.

Amit, Y. and Geman, D. (1997). Shape quantization and recognition with randomized trees. Neural Computation 9 1545- 1588.

Arena, C., Sussman, N., Chiang, K., Mazumdar, S., Macina, O. and Li, W. (2000). Bagging Structure-Activity Relationships: A simulation study for assessing misclassification rates. Presented at the Second Indo-U.S. Workshop on Mathematical Chemistry, Duluth, MI. (Available at [email protected]).

Bickel, P., Ritov, Y. and Stoker, T. (2001). Tailor-made tests for goodness of fit for semiparametric hy potheses. Unpublished manuscript.

Breiman, L. (1998). Arcing classifiers. Discussion paper, Ann. Statist. 26 801-824.

Breiman, L. (2000). Some infinity theory for tree ensembles. (Available at www.stat.berkeley.edu/technical reports).

Breiman, L. (2001). Random forests. Machine Learning J. 45 5- 32.

Breiman, L. and Friedman, J. (1985). Estimating optimal transformations in multiple regression and correlation. J. Amer. Statist. Assoc. 80 580-619.

Cristianini, N. and Shawe-Tay lor, J. (2000). An Introduction to Support Vector Machines. Cambridge Univ. Press.

Daniel, C. and Wood, F. (1971). Fitting equations to data. Wiley, New York.

Dempster, A. (1998). Logicist statistic 1. Models and Modeling. Statist. Sci. 13 3 248-276.

Diaconis, P. and Efron, B. (1983). Computer intensive methods in statistics. Scientific American 248 116-131.

Domingos, P. (1998). Occam's two razors: the sharp and the blunt. In Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (R. Agrawal and P. Stolorz, eds.) 37-43. AAAI Press, Menlo Park, CA.

Domingos, P. (1999). The role of Occam's razor in knowledge discovery. Data Mining and Knowledge Discovery 3 409-425.

Dudoit, S., Fridly and, J. and Speed, T. (2000). Comparison of discrimination methods for the classification of tumors. (Available at www.stat.berkeley.edu/technical reports).

Freedman, D. (1987). As others see us: a case study in path analysis (with discussion). J. Ed. Statist. 12 101-223.

Freedman, D. (1991). Statistical models and shoe leather. Sociological Methodology 1991 (with discussion) 291-358.

Freedman, D. (1991). Some issues in the foundations of statistics. Foundations of Science 1 19-83.

Freedman, D. (1994). From association to causation via regression. Adv. in Appl. Math. 18 59-110.

Freund, Y. and Schapire, R. (1996). Experiments with a new boosting algorithm. In Machine Learning: Proceedings of the Thirteenth International Conference 148-156. Morgan Kaufmann, San Francisco.

Friedman, J. (1999). Greedy predictive approximation: a gradient boosting machine. Technical report, Dept. Statistics Stanford Univ.

Friedman, J., Hastie, T. and Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting. Ann. Statist. 28 337-407.

Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Trans. Pattern Analy sis and Machine Intelligence 20 832-844.

Landswher, J., Preibon, D. and Shoemaker, A. (1984). Graphical methods for assessing logistic regression models (with discussion). J. Amer. Statist. Assoc. 79 61-83.

Meisel, W. (1972). Computer-Oriented Approaches to Pattern Recognition. Academic Press, New York.

Michie, D., Spiegelhalter, D. and Tay lor, C. (1994). Machine Learning, Neural and Statistical Classification. Ellis Horwood, New York.

Mosteller, F. and Tukey, J. (1977). Data Analy sis and Regression. Addison-Wesley, Redding, MA.

Mountain, D. and Hsiao, C. (1989). A combined structural and flexible functional approach for modelenery substitution. J. Amer. Statist. Assoc. 84 76-87.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. J. Roy. Statist. Soc. B 36 111-147.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer, New York.

Vapnik, V (1998). Statistical Learning Theory. Wiley, New York.