Statistical Downscaling of ERA-Interim Forecast Precipitation Data in Complex Terrain Using LASSO Algorithm

Advances in Meteorology - Tập 2014 - Trang 1-16 - 2014
Lu Gao1,2,3, Karsten Schulz4, Matthias Bernhardt2
1College of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
2Department of Geography, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
3Fujian Provincial Engineering Research Center for Monitoring and Assessing Terrestrial Disasters, Fuzhou 350007, China
4Institute of Water Management, Hydrology and Hydraulic Engineering, University of Natural Resources and Life Sciences, 1190 Vienna, Austria

Tóm tắt

Precipitation is an essential input parameter for land surface models because it controls a large variety of environmental processes. However, the commonly sparse meteorological networks in complex terrains are unable to provide the information needed for many applications. Therefore, downscaling local precipitation is necessary. To this end, a new machine learning method, LASSO algorithm (least absolute shrinkage and selection operator), is used to address the disparity between ERA-Interim forecast precipitation data (0.25° grid) and point-scale meteorological observations. LASSO was tested and validated against other three downscaling methods, local intensity scaling (LOCI), quantile-mapping (QM), and stepwise regression (Stepwise) at 50 meteorological stations, located in the high mountainous region of the central Alps. The downscaling procedure is implemented in two steps. Firstly, the dry or wet days are classified and the precipitation amounts conditional on the occurrence of wet days are modeled subsequently. Compared to other three downscaling methods, LASSO shows the best performances in precipitation occurrence and precipitation amount prediction on average. Furthermore, LASSO could reduce the error for certain sites, where no improvement could be seen when LOCI and QM were used. This study proves that LASSO is a reasonable alternative to other statistical methods with respect to the downscaling of precipitation data.

Từ khóa


Tài liệu tham khảo

10.1002/joc.1421

10.1029/2010WR010342

10.1016/j.jhydrol.2009.07.007

10.1002/hyp.7905

2002, Water Resources Research, 38, 10-1, 10.1029/2001WR000906

10.1175/2007JAMC1586.1

10.1002/joc.1688

10.1002/joc.1506

2003, Water Resources Research, 39

10.1175/JHM610.1

10.1029/2009RG000314

10.1175/JCLI-D-11-00254.1

10.1002/jgrd.50323

10.1002/joc.3518

10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2

10.1029/2001JD001485

10.1002/hyp.1418

10.1029/90RG02636

10.5194/hess-17-1189-2013

10.1177/030913339902300204

10.1016/j.jhydrol.2012.01.001

10.1016/j.gloplacha.2012.11.003

10.3354/cr034145

10.5194/hess-16-4661-2012

10.5194/hess-16-3383-2012

10.1002/joc.1597

1997, Progress in Physical Geography, 21, 530, 10.1177/030913339702100403

10.1175/1520-0442(1999)012<2474:TAMAAS>2.0.CO;2

2002, Environmental Modelling and Software, 17, 147

10.1002/met.246

10.1002/joc.703

10.1016/j.jhydrol.2005.01.025

2013, Journal of Geophysical Research-Atmospheres, 118

10.1002/joc.655

10.1002/joc.997

10.1007/s00704-004-0121-0

10.1016/j.neunet.2007.04.002

10.1016/j.jhydrol.2010.01.021

10.1016/j.jhydrol.2005.02.020

10.1002/joc.1529

10.1029/2009JD013548

10.1016/j.envsoft.2007.10.004

10.1175/1520-0442(2001)014<3289:ROMPFF>2.0.CO;2

2000, International Journal of Climatology, 20, 641, 10.1002/(SICI)1097-0088(200005)20:6<641::AID-JOC501>3.0.CO;2-1

2009

10.1002/qj.828

10.1002/qj.493

2006, ECMWF Newsletter, 110, 25

2008, ECMWF Newsletter, 115, 12

10.1029/2009JD012442

10.1175/1520-0442(2000)013<1936:VOMPIT>2.0.CO;2

10.1175/1520-0442(2003)016<0799:SPDOTN>2.0.CO;2

10.1007/s10584-007-9251-6

10.1007/s10584-006-9215-2

10.1016/j.jhydrol.2007.12.020

10.1002/joc.1287

1968

10.1002/joc.1602

10.5194/hess-16-4343-2012

10.5194/hess-11-939-2007

10.1016/j.jhydrol.2010.10.024

10.1007/s10584-011-0224-4

10.1002/joc.2168

10.1023/B:CLIM.0000013685.99609.9e

10.1175/1520-0442(2002)015<1731:SDODTI>2.0.CO;2

10.1214/07-AOAS131

1996, Journal of the Royal Statistical Society B: Methodological, 58, 267, 10.1111/j.2517-6161.1996.tb02080.x

10.2307/1390712

10.1029/2011JD017057