Static recrystallization behaviors and mechanisms of 7Mo super-austenitic stainless steel with undissolved sigma precipitates during double-stage hot deformation

Shi-guang Xu1, Jin-shan He1, Run-ze Zhang1, Fu-cheng Zhang2, Xi-tao Wang1,3
1Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing, China
2State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, China
3Shandong Provincial Key Laboratory for High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Science), Jinan, China

Tóm tắt

Static recrystallization (SRX) behaviors and corresponding recrystallization mechanisms of 7Mo super-austenitic stainless steel were studied under different deformation conditions. The order of influence of deformation parameters on static recrystallization behaviors, from high to low, is followed by temperature, first-stage strain and strain rate. Meanwhile, the effect of holding time on static recrystallization behaviors is significantly controlled by temperature. In addition, with the increase in temperature from 1000 to 1200 °C, the static recrystallization mechanism evolves from discontinuous static recrystallization and continuous static recrystallization (cSRX) to metadynamic recrystallization and cSRX, and finally to cSRX. The cSRX exists at all temperatures. This is because high stacking fault energy (56 mJ m−2) promotes the movement of dislocations, making the deformation mechanism of this steel is dominated by planar slip of dislocation. Large undissolved sigma precipitates promote static recrystallization through particle-stimulated nucleation. However, small strain-induced precipitates at grain boundaries hinder the nucleation of conventional SRX and the growth of recrystallized grains, while the hindering effect decreases with the increase in temperature.

Tài liệu tham khảo

Y. Han, H. Wu, W. Zhang, D. Zou, G. Liu, G. Qiao, Mater. Des. 69 (2015) 230–240. G. Liu, Y. Han, Z. Shi, J. Sun, D. Zou, G. Qiao, Mater. Des. 53 (2014) 662–672. J. Olsson, W. Wasielewska, Mater. Corros. 48 (1997) 791–798. K.A. Babu, S. Mandal, C.N. Athreya, B. Shakthipriya, V.S. Sarma, Mater. Des. 115 (2017) 262–275. F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, Amsterdam, Elsevier, 1995. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci. 60 (2014) 130–207. S. Ding, S.A. Khan, J. Yanagimoto, Mater. Sci. Eng. A 822 (2021) 141673. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett, Mater. Sci. Eng. A 238 (1997) 219–274. K. Huang, R.E. Logé, Mater. Des. 111 (2016) 548–574. B. Aashranth, D. Samantaray, M. Arvinth Davinci, S. Murugesan, U. Borah, S.K. Albert, A.K. Bhaduri, Mater. Charact. 136 (2018) 100–110. N. Bayat, G.R. Ebrahimi, A. Momeni, H.R. Ezatpour, Int. J. Miner. Metall. Mater. 25 (2018) 181–189. W. Zhang, J. Zhang, Y. Han, R. Liu, D.N. Zou, G.J. Qiao, J. Iron Steel Res. Int. 23 (2016) 151–159. B. Wallén, E. Alfonsson, Werkstoffe Und Korrosion 46 (1995) 347–353. Z.G. Song, E.X. Pu, J. Iron Steel Res. Int. 24 (2017) 743–749. T. Koutsoukis, A. Redjaïmia, G. Fourlaris, Solid State Phenom. 172–174 (2011) 493–498. S. Zhang, H. Li, Z. Jiang, B. Zhang, Z. Li, J. Wu, S. Fan, H. Feng, H. Zhu, Mater. Charact. 152 (2019) 141–150. S. Zhang, Z. Jiang, H. Li, H. Feng, B. Zhang, J. Alloy. Compd. 695 (2017) 3083–3093. C. Lee, Y. Lee, C. Lee, S. Hong, Mater. Sci. Eng. A 733 (2018) 16–23. M. Hradilová, F. Montheillet, A. Fraczkiewicz, C. Desrayaud, P. Lejček, Mater. Sci. Eng. A 580 (2013) 217–226. D.D. Lu, J.F. Li, Y.J. Guo, G. Wang, R. Wu, P.C. Ma, Y.L. Chen, X.H. Zhang, W. You, R.F. Zhang, J. Alloy. Compd. 909 (2022) 164716. W. Huo, L. Hou, H. Cui, L. Zhuang, J. Zhang, Mater. Sci. Eng. A 618 (2014) 244–253. Q. Wang, B. Gao, K. Wang, W. Wang, L. Tong, X. Li, Mater. Sci. Eng. A 820 (2021) 141578. S. Ding, T. Taylor, S.A. Khan, Y. Sato, J. Yanagimoto, J. Mater. Process. Technol. 299 (2022) 117359. K.P. Rao, Y.K.D.V. Prasad, E.B. Hawbolt, J. Mater. Process. Technol. 77 (1988) 166–174. F. Jiang, H. Zhang, L. Li, J. Chen, Mater. Sci. Eng. A 552 (2012) 269–275. S.I. Kim, Y. Lee, B.L. Jang, Mater. Sci. Eng. A 357 (2003) 235–239. Z. Yanushkevich, A. Belyakov, R. Kaibyshev, Acta Mater. 82 (2015) 244–254. A. Dehghan-Manshadi, M.R. Barnett, P.D. Hodgson, Mater. Sci. Eng. A 485 (2008) 664–672. A. Dehghan-Manshadi, M.R. Barnett, P.D. Hodgson, Metall. Mater. Trans. A 39 (2008) 1371–1381. S. Xu, J. He, R. Zhang, F. Zhang, X. Wang, J. Mater. Res. Technol. 23 (2023) 1738–1752. F. Chen, Z. Cui, D. Sui, B. Fu, Mater. Sci. Eng. A 540 (2012) 46–54. R.L. Goetz, S.L. Semiatin, J. Mater. Eng. Perform. 10 (2001) 710–717. X.M. Chen, Y.C. Lin, X.H. Li, M.S. Chen, W.Q. Yuan, Vacuum 149 (2018) 1–11. J.D. Yoo, K.T. Park, Mater. Sci. Eng. A 496 (2008) 417–424. I. Gutierrez-Urrutia, A. Shibata, K. Tsuzaki, Acta Mater. 233 (2022) 117980. G.B. Olson, M. Cohen, Metall. Trans. A 7 (1976) 1897–1904. S. Curtze, V.T. Kuokkala, A. Oikari, J. Talonen, H. Hänninen, Acta Mater. 59 (2011) 1068–1076. S. Curtze, V.T. Kuokkala, Acta Mater. 58 (2010) 5129–5141. S. Kumar, D. Samantaray, B. Aashranth, N. Keskar, M.A. Davinci, U. Borah, D. Srivastava, A.K. Bhaduri, Mater. Sci. Eng. A 743 (2019) 148–158. W. Huang, Calphad 13 (1989) 243–252. A.T. Dinsdale, Calphad 15 (1991) 317–425.