Tính chất tĩnh và hiệu suất chịu tác động của bê tông biến đổi PU hình chữ U dưới tải trọng tác động rơi trọng lực lặp lại

Archives of Civil and Mechanical Engineering - Tập 23 - Trang 1-20 - 2023
Saleh Ahmad Laqsum1, Han Zhu1,2, Zhao Bo1,2, S. I. Haruna1, Ali Al-shawafi1, Said Mirgan Borito1
1School of Civil Engineering, Tianjin University, Tianjin, China
2Key Laboratory of Coast Civil Structure Safety of the Ministry of Education, Tianjin University, Tianjin, China

Tóm tắt

Nghiên cứu này điều tra sức mạnh tác động của bê tông biến đổi polyurethane (PU) hình chữ U bằng cách sử dụng thử nghiệm tác động rơi trọng lực lặp lại. Một mẫu hình chữ U được giới thiệu trong nghiên cứu này nhằm điều chỉnh quy trình thử nghiệm của ủy ban ACI 544-2R cho thử nghiệm tác động rơi trọng lực với mục đích giảm thiểu sự rải rác kết quả của phương pháp thử nghiệm này. Các đặc tính tĩnh và khả năng chịu tác động của bê tông biến đổi PU hình chữ U đã được thử nghiệm với các trọng lượng rơi lặp lại là 0.877 kg. Tác động của chất kết dính PU lên hiệu suất cơ học và sức mạnh chịu tác động đã được đánh giá trong bốn nhóm bê tông biến đổi PU chứa 0%, 10%, 20% và 30% được chuẩn bị để sản xuất các mẫu bê tông-polyurethane (NC-PU) thông thường. Các kỹ thuật học máy (ML), bao gồm mạng nơ-ron nhân tạo (ANN) và hồi quy vector hỗ trợ (SVR), đã được sử dụng để đào tạo và thử nghiệm tập dữ liệu thực nghiệm. Kết quả cho thấy các chất kết dính PU giảm đáng kể hành vi cơ học và cải thiện sức mạnh tác động của bê tông. Tại nội dung tối ưu, sức bền uốn đã tăng 3.6%, và sức bền nén của mẫu kiểm soát (NC-PU0) cao hơn 49.17% so với mẫu bê tông chứa 20% PU (NC-PU2). Các mẫu hình chữ U làm giảm sự rải rác kết quả của thử nghiệm tác động rơi trọng lực lặp lại như được đề xuất bởi phương pháp thử nghiệm ACI 544-2R. Việc thêm 10% PU và 20% chất kết dính PU đã cải thiện sức mạnh chịu crack đầu tiên của NC-PU1, NC-PU2, và NC-PU3 lần lượt 685.71%, 1528.6%, và 157% so với mẫu NC-PU0. Các kỹ thuật học máy dự đoán chính xác N2. ANN và SVR cho thấy một mối quan hệ mạnh mẽ giữa N2 thực nghiệm và N2 dự đoán với các giá trị tương quan xác định (R2) lần lượt là 0.9944 và 0.9981 tại giai đoạn đào tạo và thử nghiệm.

Từ khóa

#bê tông polyurethane #khả năng chịu tác động #thử nghiệm tác động #học máy #mạng nơ-ron nhân tạo #hồi quy vector hỗ trợ

Tài liệu tham khảo

Zhou X, Xie Y, Long G, Zeng X, Li J, Yao L, et al. DEM analysis of the effect of interface transition zone on dynamic splitting tensile behavior of high-strength concrete based on multi-phase model. Cem Concr Res. 2021;149:106577. https://doi.org/10.1016/j.cemconres.2021.106577. Gao Y, Romero P, Zhang H, Huang M, Lai F. Unsaturated polyester resin concrete: a review. Constr Build Mater. 2019;228:116709. https://doi.org/10.1016/j.conbuildmat.2019.116709. Mounanga P, Gbongbon W, Poullain P, Turcry P. Proportioning and characterization of lightweight concrete mixtures made with rigid polyurethane foam wastes. Cem Concr Compos. 2008;30:806–14. https://doi.org/10.1016/j.cemconcomp.2008.06.007. Verdolotti L, Lavorgna M, Di Maio E, Iannace S. Hydration-induced reinforcement of rigid polyurethane-cement foams: the effect of the co-continuous morphology on the thermal-oxidative stability. Polym Degrad Stab. 2013;98:64–72. https://doi.org/10.1016/j.polymdegradstab.2012.10.027. Rabello LG, Carlos da Conceição Ribeiro R. A novel vermiculite/vegetable polyurethane resin-composite for thermal insulation eco-brick production. Compos Part B Eng. 2021. https://doi.org/10.1016/j.compositesb.2021.109035. Sanches AO, Teixeira GF, Zaghete MA, Longo E, Malmonge JA, Silva MJ, et al. Influence of polymer insertion on the dielectric, piezoelectric and acoustic properties of 1-0-3 polyurethane/cement-based piezo composite. Mater Res Bull. 2019;119:110541. https://doi.org/10.1016/j.materresbull.2019.110541. Karbhari VM, Eckel DA, Tunis GC III. Strengthening of concrete column stubs through resin infused composite wraps. J Thermoplast Compos Mater. 1993;6:92–107. Hussain HK, Liu GW, Yong YW. Experimental study to investigate mechanical properties of new material polyurethane–cement composite (PUC). Constr Build Mater. 2014;50:200–8. https://doi.org/10.1016/j.conbuildmat.2013.09.035. Reis JML, Ferreira AJM. Assessment of fracture properties of epoxy polymer concrete reinforced with short carbon and glass fibers. Constr Build Mater. 2004;18:523–8. Shao J, Zhu H, Zuo X, Lei W, Mirgan S, Liang J, et al. Effect of waste rubber particles on the mechanical performance and deformation properties of epoxy concrete for repair. Constr Build Mater. 2020;241:118008. https://doi.org/10.1016/j.conbuildmat.2020.118008. Afzal A, Kausar A, Siddiq M. Role of polymeric composite in civil engineering applications: a review. Polym Technol Mater. 2020;59:1023–40. https://doi.org/10.1080/25740881.2020.1719141. Pendhari SS, Kant T, Desai YM. Application of polymer composites in civil construction: a general review. Compos Struct. 2008;84:114–24. https://doi.org/10.1016/j.compstruct.2007.06.007. Ibrahim Haruna S, Zhu H, Jiang W, Shao J. Evaluation of impact resistance properties of polyurethane-based polymer concrete for the repair of runway subjected to repeated drop-weight impact test. Constr Build Mater. 2021;309:125152. https://doi.org/10.1016/j.conbuildmat.2021.125152. Jiang W, Zhu H, Haruna SI, Zhao B, Shao J, Yu Y. Effect of crumb rubber powder on mechanical properties and pore structure of polyurethane-based polymer mortar for repair. Constr Build Mater. 2021;309:125169. https://doi.org/10.1016/j.conbuildmat.2021.125169. Jung K-C, Roh I-T, Chang S-H. Evaluation of mechanical properties of polymer concretes for the rapid repair of runways. Compos Part B Eng. 2014;58:352–60. https://doi.org/10.1016/j.compositesb.2013.10.076. Huang H, Pang H, Huang J, Zhao H, Liao B. Synthesis and characterization of ground glass fiber reinforced polyurethane-based polymer concrete as a cementitious runway repair material. Constr Build Mater. 2020. https://doi.org/10.1016/j.conbuildmat.2019.117221. Sadowski Ł, Hoła J, Żak A, Chowaniec A. Microstructural and mechanical assessment of the causes of failure of floors made of polyurethane-cement composites. Compos Struct. 2020;238:112002. https://doi.org/10.1016/j.compstruct.2020.112002. ACI Committee 548. 548.6R-96: polymer concrete-structural applications. State-of-the-art report. Farmington Hills: American Concrete Institute; 1996. p. 1–23. Li M, Du M, Wang F, Xue B, Zhang C, Fang H. Study on the mechanical properties of polyurethane (PU) grouting material of different geometric sizes under uniaxial compression. Constr Build Mater. 2020;259:119797. https://doi.org/10.1016/j.conbuildmat.2020.119797. Al-kahtani MSM, Zhu H, Haruna SI, Shao J. Evaluation of Mechanical properties of polyurethane-based polymer rubber concrete modified ground glass fiber using response surface methodology. Arab J Sci Eng. 2022;48:4695–710. Harith IK. Study on polyurethane foamed concrete for use in structural applications. Case Stud Constr Mater. 2018;8:79–86. https://doi.org/10.1016/j.cscm.2017.11.005. Jia Z, Jia D, Sun Q, Wang Y, Ding H. Preparation and mechanical-fatigue properties of elastic polyurethane concrete composites. Materials (Basel). 2021;14:3839. Nikoukalam MT, Sideris P. Experimental characterization and constitutive modeling of polyurethanes for structural applications, accounting for damage, hysteresis, loading rate and long term effects. Eng Struct. 2019;198:109462. https://doi.org/10.1016/j.engstruct.2019.109462. Unnikrishna Pillai U, Anand KB. Performance evaluation of polyurethane-nano silica modified cement mortar. Mater Today Proc. 2021;46:4788–94. https://doi.org/10.1016/j.matpr.2020.10.314. Li WW, Ji WM, Fang GH, Liu YQ, Xing F, Liu YK, et al. Electrochemical impedance interpretation for the fracture toughness of carbon nanotube/cement composites. Constr Build Mater. 2016;114:499–505. https://doi.org/10.1016/j.conbuildmat.2016.03.215. Tang J, Liu J, Yu C, Wang R. Influence of cationic polyurethane on mechanical properties of cement based materials and its hydration mechanism. Constr Build Mater. 2017;137:494–504. https://doi.org/10.1016/j.conbuildmat.2016.12.162. Althoey F, Zaid O, Alsharari F, Yosri AM, Isleem HF. Evaluating the impact of nano-silica on characteristics of self-compacting geopolymer concrete with waste tire steel fiber. Arch Civ Mech Eng. 2022;23:48. https://doi.org/10.1007/s43452-022-00587-2. Lei Z, Wenhua Z, Yuan C, Wanting Z, Yunsheng Z. Research on the dynamic impact performance of polyurethane cement-based composite. Constr Build Mater. 2022;336:127574. https://doi.org/10.1016/j.conbuildmat.2022.127574. Vasconcelos PV, Lino FJ, Magalhães A, Neto RJL. Impact fracture study of epoxy-based composites with aluminium particles and milled fibres. J Mater Process Technol. 2005;170:277–83. https://doi.org/10.1016/j.jmatprotec.2005.05.006. Somarathna HMCC, Raman SN, Mohotti D, Mutalib AA, Badri KH. Behaviour of concrete specimens retrofitted with bio-based polyurethane coatings under dynamic loads. Constr Build Mater. 2021;270:121860. https://doi.org/10.1016/j.conbuildmat.2020.121860. Grujicic M, Pandurangan B, d’Entremont B. The role of adhesive in the ballistic/structural performance of ceramic/polymer–matrix composite hybrid armor. Mater Des. 2012;41:380–93. https://doi.org/10.1016/j.matdes.2012.05.023. Amini MR, Isaacs JB, Nemat-Nasser S. Experimental investigation of response of monolithic and bilayer plates to impulsive loads. Int J Impact Eng. 2010;37:82–9. https://doi.org/10.1016/j.ijimpeng.2009.04.002. Amini MR, Isaacs J, Nemat-Nasser S. Investigation of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments. Mech Mater. 2010;42:628–39. https://doi.org/10.1016/j.mechmat.2009.09.008. Nantasetphong W, Jia Z, Amirkhizi AV, Nemat-nasser S. Mechanics of Materials Dynamic properties of polyurea-milled glass composites Part I: experimental characterization. Mech Mater. 2016;98:142–53. https://doi.org/10.1016/j.mechmat.2016.04.005. Ackland K, Anderson C, Ngo TD. Deformation of polyurea-coated steel plates under localised blast loading. Int J Impact Eng. 2013;51:13–22. https://doi.org/10.1016/j.ijimpeng.2012.08.005. Cao Y, Zandi Y, Rahimi A, Petković D, Denić N, Stojanović J, et al. Evaluation and monitoring of impact resistance of fiber reinforced concrete by adaptive neuro fuzzy algorithm. Structures. 2021;34:3750–6. https://doi.org/10.1016/j.istruc.2021.09.072. Khosravani MR, Nasiri S, Anders D, Weinberg K. Prediction of dynamic properties of ultra-high performance concrete by an artificial intelligence approach. Adv Eng Softw. 2019;127:51–8. https://doi.org/10.1016/j.advengsoft.2018.10.002. Liu J-C, Zhang Z. A machine learning approach to predict explosive spalling of heated concrete. Arch Civ Mech Eng. 2020;20:134. https://doi.org/10.1007/s43452-020-00135-w. Demir MM, Yilgor I, Yilgor E, Erman B. Electrospinning of polyurethane fibers. Polymer (Guildf). 2002;43:3303–9. https://doi.org/10.1016/S0032-3861(02)00136-2. Al-kahtani MSM, Zhu H, Ibrahim YE, Haruna SI. Experimental study on the strength and durability-related properties of ordinary Portland and rapid hardening Portland cement mortar containing polyurethane binder. Case Stud Constr Mater. 2022;17:e01530. https://doi.org/10.1016/j.cscm.2022.e01530. Yilin P, Wenhua Z, Wanting Z, Yunsheng Z. Study on the mechanical behaviors and failure mechanism of polyurethane cement composites under uniaxial compression and tension. Arch Civ Mech Eng. 2021;22:18. https://doi.org/10.1007/s43452-021-00342-z. GB/T17671-1999. Method of testing cements—determination of strength. Chinese National Standard; 1999. Al-shawafi A, Zhu H, Haruna SI, Bo Z, Laqsum SA, Borito SM. Experimental study and machine learning algorithms for evaluating the performance of U-shaped ultra-high performance reinforced fiber concrete under static and impact loads. J Build Eng. 2023;70:106389. https://doi.org/10.1016/j.jobe.2023.106389. Kumar P, Nigam SP, Kumar N. Vehicular traffic noise modeling using artificial neural network approach. Transp Res Part C Emerg Technol. 2014;40:111–22. https://doi.org/10.1016/j.trc.2014.01.006. Brereton RG, Lloyd GR. Support vector machines for classification and regression. Analyst. 2010;135:230–67. Gouda SG, Hussein Z, Luo S, Yuan Q. Model selection for accurate daily global solar radiation prediction in China. J Clean Prod. 2019;221:132–44. https://doi.org/10.1016/j.jclepro.2019.02.211. Farouk AIB, Jinsong Z. Prediction of interface bond strength between ultra-high-performance concrete (UHPC) and normal strength concrete (NSC) using a machine learning approach. Arab J Sci Eng. 2022. https://doi.org/10.1007/s13369-021-06433-6. ACI 544.2R-89. Measurement of properties of fiber reinforced concrete, vol. 89. Farmington Hills: Am. Concr. Inst; 1989. p. 433–9. Zhu XC, Zhu H, Li HR. Drop-weight impact test on U-shape concrete specimens with statistical and regression analyses. Materials (Basel). 2015;8:5877–90. https://doi.org/10.3390/ma8095281. Haruna SI, Zhu H, Shao J. Experimental study, modeling, and reliability analysis of impact resistance of micro steel fiber-reinforced concrete modified with nano silica. Struct Concr. 2022. https://doi.org/10.1002/SUCO.202100651. Cao H. Experimental investigation on the static and impact behaviors of basalt fiber-reinforced concrete. Open Civ Eng J. 2017;11:14–21. Rai B, Singh NK. Statistical and experimental study to evaluate the variability and reliability of impact strength of steel-polypropylene hybrid fiber reinforced concrete. J Build Eng. 2021;44:102937. https://doi.org/10.1016/j.jobe.2021.102937. Prasad N, Murali G. Exploring the impact performance of functionally-graded preplaced aggregate concrete incorporating steel and polypropylene fibres. J Build Eng. 2021;35:102077. https://doi.org/10.1016/j.jobe.2020.102077. Mastali M, Dalvand A. The impact resistance and mechanical properties of self-compacting concrete reinforced with recycled CFRP pieces. Compos Part B Eng. 2016;92:360–76. https://doi.org/10.1016/j.compositesb.2016.01.046. Badr A, Ashour AF, Platten AK. Statistical variations in impact resistance of polypropylene fibre-reinforced concrete. Int J Impact Eng. 2006;32:1907–20. https://doi.org/10.1016/j.ijimpeng.2005.05.003. Nataraja MC, Dhang N, Gupta AP. Statistical variations in impact resistance of steel fiber-reinforced concrete subjected to drop weight test. Cem Concr Res. 1999;29:989–95. https://doi.org/10.1016/S0008-8846(99)00052-6. Song PS, Wu JC, Hwang S, Sheu BC. Statistical analysis of impact strength and strength reliability of steel–polypropylene hybrid fiber-reinforced concrete. Constr Build Mater. 2005;19:1–9. https://doi.org/10.1016/j.conbuildmat.2004.05.002. Nourani V, Sharghi ZAE. Sensitivity analysis and ensemble artificial intelligence—based model for short-term prediction of—NO2 concentration. Int J Environ Sci Technol. 2020. https://doi.org/10.1007/s13762-020-03002-6. Ahmed AA, Pradhan B. Vehicular traffic noise prediction and propagation modelling using neural networks and geospatial information system. Environ Monit Assess. 2019;191:190. https://doi.org/10.1007/s10661-019-7333-3. Taylor KE. Summarizing multiple aspects of model performance in a single diagram. J Geophys Res. 2001;106:7183–92. https://doi.org/10.1029/2000JD900719. Yaseen ZM, Deo RC, Hilal A, Abd AM, Bueno LC, Salcedo-Sanz S, et al. Predicting compressive strength of lightweight foamed concrete using extreme learning machine model. Adv Eng Softw. 2018;115:112–25. https://doi.org/10.1016/j.advengsoft.2017.09.004.