Static condensation based reduced order modelling of stochastically parametered large ordered systems
Tài liệu tham khảo
Muscolino, 2012, Stochastic analysis of structures with uncertain-but-bounded parameters via improved interval analysis, Probab. Eng. Mech., 28, 152, 10.1016/j.probengmech.2011.08.011
Soize, 2013, Stochastic modeling of uncertainties in computational structural dynamics — Recent theoretical advances, J. Sound Vib., 332, 2379, 10.1016/j.jsv.2011.10.010
Li, 2018, Adaptive sub-interval perturbation-based computational strategy for epistemic uncertainty in structural dynamics with evidence theory, Probab. Eng. Mech., 53, 75, 10.1016/j.probengmech.2018.05.001
Ghanem, 1991
Kleiber, 1993
Haldar, 2000
Mahadevan, 1991, Practical random field discretization in stochastic finite element analysis, Struct. Saf., 9, 283, 10.1016/0167-4730(91)90050-J
Li, 1993, Optimal discretization of random fields, J. Eng. Mech., 119, 1136, 10.1061/(ASCE)0733-9399(1993)119:6(1136)
Zeldin, 1998, On random field discretization in stochastic finite elements, J. Appl. Mech., 65, 320, 10.1115/1.2789057
Manohar, 1999, Progress in structural dynamics with stochastic parameter variations, Appl. Mech. Rev., 52, 177, 10.1115/1.3098933
Stefanou, 2009, The stochastic finite element method: past, present and future, Comput. Methods Appl. Mech. Engrg., 198, 1031, 10.1016/j.cma.2008.11.007
Blatman, 2010, An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis, Probab. Eng. Mech., 25, 183, 10.1016/j.probengmech.2009.10.003
Faravelli, 1989, Response surface approach for reliability analysis, J. Eng. Mech., 115, 2763, 10.1061/(ASCE)0733-9399(1989)115:12(2763)
Bucher, 1990, A fast and efficient response surface approach for structural reliability problems, Struct. Saf., 7, 57, 10.1016/0167-4730(90)90012-E
Gupta, 2004, An improved response surface method for the determination of failure probability and importance measures, Struct. Saf., 26, 123, 10.1016/S0167-4730(03)00021-3
Gupta, 2004, Improved response surface method for time variant reliability analysis of nonlinear random structures under nonstationary excitations, Nonlinear Dynam., 36, 267, 10.1023/B:NODY.0000045519.49715.93
Ghanem, 1990, Polynomial chaos in stochastic finite elements, J. Appl. Mech., 57, 197, 10.1115/1.2888303
Xiu, 2002, The Wiener – Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 619, 10.1137/S1064827501387826
Xiu, 2010
Gupta, 2016, Uncertainty quantification in structural engineering: current status and computational challenges, Uncertain. Quant. Comput. Sci., 119, 10.1142/9789814730587_0005
Ghosh, 2005, Analysis of eigenvalues and modal interaction of stochastic systems, AIAA J., 43, 2196, 10.2514/1.8786
Sudret, 2000
Desai, 2010, Analysis of a nonlinear aeroelastic system with parametric uncertainties using polynomial chaos expansion, Math. Probl. Eng., 21, 1, 10.1155/2010/379472
Pranesh, 2015, Faster computation of the Karhunen–Loéve expansion using its domain independence property, Comput. Methods Appl. Mech. Engrg., 285, 125, 10.1016/j.cma.2014.10.053
Guyan, 1965, Reduction to stiffness and mass matrices, AIAA J., 3, 380, 10.2514/3.2874
Cameron, 1947, The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals, Ann. of Math., 48, 385, 10.2307/1969178
Soize, 2004, Physical systems with random uncertainties: chaos representations with arbitrary probability measure, SIAM J. Sci. Comput., 26, 395, 10.1137/S1064827503424505
Das, 2009, Polynomial chaos representation of spatio-temporal random fields from experimental measurements, J. Comput. Phys., 228, 8726, 10.1016/j.jcp.2009.08.025
Sasikumar, 2015, A data driven polynomial chaos based approach for stochastic analysis of CFRP laminated composite plates, Compos. Struct., 125, 212, 10.1016/j.compstruct.2015.02.010
Liu, 1986, Multivariate distribution models with prescribed marginals and covariances, Probab. Eng. Mech., 1, 105, 10.1016/0266-8920(86)90033-0
Babuska, 2007, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45, 1005, 10.1137/050645142
Nobile, 2008, A sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal., 46, 2309, 10.1137/060663660
Bessa, 2017, A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality, Comput. Methods Appl. Mech. Engrg., 320, 633, 10.1016/j.cma.2017.03.037
Smolyak, 1963, Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl. Akad. Nauk SSSR, 148, 1042
Gerstner, 1998, Numerical integration using sparse grids, Numer. Algorithms, 18, 209, 10.1023/A:1019129717644
Field Jr., 2004, On the accuracy of the polynomial chaos approximation, Probab. Eng. Mech., 19, 65, 10.1016/j.probengmech.2003.11.017
Petyt, 2010