Static condensation based reduced order modelling of stochastically parametered large ordered systems

Probabilistic Engineering Mechanics - Tập 66 - Trang 103166 - 2021
Rahul Kumar1, Shaikh Faruque Ali1, Sayan Gupta1,2
1Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
2Complex Systems and Dynamics Group, Indian Institute of Technology Madras, Chennai 600036, India

Tài liệu tham khảo

Muscolino, 2012, Stochastic analysis of structures with uncertain-but-bounded parameters via improved interval analysis, Probab. Eng. Mech., 28, 152, 10.1016/j.probengmech.2011.08.011 Soize, 2013, Stochastic modeling of uncertainties in computational structural dynamics — Recent theoretical advances, J. Sound Vib., 332, 2379, 10.1016/j.jsv.2011.10.010 Li, 2018, Adaptive sub-interval perturbation-based computational strategy for epistemic uncertainty in structural dynamics with evidence theory, Probab. Eng. Mech., 53, 75, 10.1016/j.probengmech.2018.05.001 Ghanem, 1991 Kleiber, 1993 Haldar, 2000 Mahadevan, 1991, Practical random field discretization in stochastic finite element analysis, Struct. Saf., 9, 283, 10.1016/0167-4730(91)90050-J Li, 1993, Optimal discretization of random fields, J. Eng. Mech., 119, 1136, 10.1061/(ASCE)0733-9399(1993)119:6(1136) Zeldin, 1998, On random field discretization in stochastic finite elements, J. Appl. Mech., 65, 320, 10.1115/1.2789057 Manohar, 1999, Progress in structural dynamics with stochastic parameter variations, Appl. Mech. Rev., 52, 177, 10.1115/1.3098933 Stefanou, 2009, The stochastic finite element method: past, present and future, Comput. Methods Appl. Mech. Engrg., 198, 1031, 10.1016/j.cma.2008.11.007 Blatman, 2010, An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis, Probab. Eng. Mech., 25, 183, 10.1016/j.probengmech.2009.10.003 Faravelli, 1989, Response surface approach for reliability analysis, J. Eng. Mech., 115, 2763, 10.1061/(ASCE)0733-9399(1989)115:12(2763) Bucher, 1990, A fast and efficient response surface approach for structural reliability problems, Struct. Saf., 7, 57, 10.1016/0167-4730(90)90012-E Gupta, 2004, An improved response surface method for the determination of failure probability and importance measures, Struct. Saf., 26, 123, 10.1016/S0167-4730(03)00021-3 Gupta, 2004, Improved response surface method for time variant reliability analysis of nonlinear random structures under nonstationary excitations, Nonlinear Dynam., 36, 267, 10.1023/B:NODY.0000045519.49715.93 Ghanem, 1990, Polynomial chaos in stochastic finite elements, J. Appl. Mech., 57, 197, 10.1115/1.2888303 Xiu, 2002, The Wiener – Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 619, 10.1137/S1064827501387826 Xiu, 2010 Gupta, 2016, Uncertainty quantification in structural engineering: current status and computational challenges, Uncertain. Quant. Comput. Sci., 119, 10.1142/9789814730587_0005 Ghosh, 2005, Analysis of eigenvalues and modal interaction of stochastic systems, AIAA J., 43, 2196, 10.2514/1.8786 Sudret, 2000 Desai, 2010, Analysis of a nonlinear aeroelastic system with parametric uncertainties using polynomial chaos expansion, Math. Probl. Eng., 21, 1, 10.1155/2010/379472 Pranesh, 2015, Faster computation of the Karhunen–Loéve expansion using its domain independence property, Comput. Methods Appl. Mech. Engrg., 285, 125, 10.1016/j.cma.2014.10.053 Guyan, 1965, Reduction to stiffness and mass matrices, AIAA J., 3, 380, 10.2514/3.2874 Cameron, 1947, The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals, Ann. of Math., 48, 385, 10.2307/1969178 Soize, 2004, Physical systems with random uncertainties: chaos representations with arbitrary probability measure, SIAM J. Sci. Comput., 26, 395, 10.1137/S1064827503424505 Das, 2009, Polynomial chaos representation of spatio-temporal random fields from experimental measurements, J. Comput. Phys., 228, 8726, 10.1016/j.jcp.2009.08.025 Sasikumar, 2015, A data driven polynomial chaos based approach for stochastic analysis of CFRP laminated composite plates, Compos. Struct., 125, 212, 10.1016/j.compstruct.2015.02.010 Liu, 1986, Multivariate distribution models with prescribed marginals and covariances, Probab. Eng. Mech., 1, 105, 10.1016/0266-8920(86)90033-0 Babuska, 2007, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45, 1005, 10.1137/050645142 Nobile, 2008, A sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal., 46, 2309, 10.1137/060663660 Bessa, 2017, A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality, Comput. Methods Appl. Mech. Engrg., 320, 633, 10.1016/j.cma.2017.03.037 Smolyak, 1963, Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl. Akad. Nauk SSSR, 148, 1042 Gerstner, 1998, Numerical integration using sparse grids, Numer. Algorithms, 18, 209, 10.1023/A:1019129717644 Field Jr., 2004, On the accuracy of the polynomial chaos approximation, Probab. Eng. Mech., 19, 65, 10.1016/j.probengmech.2003.11.017 Petyt, 2010