Static and transient optical properties of thin film indium tin oxide during laser excitation

International Journal of Heat and Mass Transfer - Tập 209 - Trang 124119 - 2023
Dorian Kürschner1, Goran Hallum2, Sönke Vogel3, Heinz Paul Huber2, Wolfgang Schulz1
1Nonlinear Dynamics of Laser Manufacturing Processes Instruction and Research Department, RWTH Aachen University, Steinbachstr. 15, Aachen, 52074, NRW, Germany
2Department of Applied Sciences and Mechatronics, Hochschule München University of Applied Sciences, Lothstr. 34, Munich, 80335, Bavaria, Germany
3Chair for Laser Technology, RWTH Aachen University, Steinbachstr. 15, Aachen, 52074, NRW, Germany

Tài liệu tham khảo

Ginley, 2000, Transparent conducting oxides, MRS Bull., 25, 15, 10.1557/mrs2000.256 K. Ellmer, Past achievements and future challenges in the development of optically transparent electrodes, Nat. Photonics 6 (12) (2012) 809–817, doi:10.1038/nphoton.2012.282. Harrison, 2010, A study of stitch line formation during high speed laser patterning of thin film indium tin oxide transparent electrodes, Appl. Surf. Sci., 256, 7276, 10.1016/j.apsusc.2010.05.064 Aleksandrova, 2013, Photolithography versus lift off process for patterning of sputtered indium tin oxide for flexible displays, Int. J. Thin Films Sci.Technol., 2, 67, 10.12785/ijtfst/020202 Du, 2014, Highly transparent and conductive indium tin oxide thin films for solar cells grown by reactive thermal evaporation at low temperature, Appl. Phys. A, 117, 815, 10.1007/s00339-014-8436-x A. Rämer, O. Osmani, B. Rethfeld, Laser damage in silicon: energy absorption, relaxation, and transport, J. Appl. Phys. 116 (5) (2014) 053508, doi: 10.1063/1.4891633. Kennedy, 1995, A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media: Part I-Theory, IEEE J. Quantum Electron., 31, 2241, 10.1109/3.477753 Gamaly, 2014, Transient optical properties of dielectrics and semiconductors excited by an ultrashort laser pulse, J. Opt. Soc. Am. B, 31, C36, 10.1364/JOSAB.31.000C36 de Aldana, 2005, Propagation of ablation channels with multiple femtosecond laser pulses in dielectrics: numerical simulations and experiments, J. Phys. D Appl. Phys., 38, 2764, 10.1088/0022-3727/38/16/004 Chen, 2002, Modeling of femtosecond laser-induced non-equilibrium deformation in metal films, Int. J. Solids Struct., 39, 3199, 10.1016/S0020-7683(02)00242-1 Zhigilei, 2000, Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes, J. Appl. Phys., 88, 1281, 10.1063/1.373816 Zhigilei, 2009, Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion, J. Phys. Chem. C, 113, 11892, 10.1021/jp902294m M. Fox, Optical properties of solids, 2002. Hamberg, 1986, Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows, J. Appl. Phys., 60, R123, 10.1063/1.337534 Liu, 2014, Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties, Appl. Phys. Lett., 105, 181117, 10.1063/1.4900936 Sun, 2013, Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses, Opt. Express, 21, 7858, 10.1364/OE.21.007858 Forouhi, 1986, Optical dispersion relations for amorphous semiconductors and amorphous dielectrics, Phys. Rev. B, 34, 7018, 10.1103/PhysRevB.34.7018 Forouhi, 1988, Optical Properties of Crystalline semicond, Phys. Rev. B, 38, 1865, 10.1103/PhysRevB.38.1865 Jellison, 1996, Parameterization of the optical functions of amorphous materials in the interband region, Appl. Phys. Lett., 69, 371, 10.1063/1.118064 Tauc, 1968, Optical properties and electronic structure of amorphous Ge and Si, Mater. Res. Bull., 3, 37, 10.1016/0025-5408(68)90023-8 Lucarini, 2005, Vol. 110 Noack, 1999, Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density, IEEE J. Quantum Electron., 35, 1156, 10.1109/3.777215 Keldysh, 1965, Ionization in the field of a strong electromagnetic wave, Sov. Phys. JETP, 20, 1307 Vogel, 2005, Mechanisms of femtosecond laser nanosurgery of cells and tissues, Appl. Phys. B, 81, 1015, 10.1007/s00340-005-2036-6 Willems van Beveren, 2014, Indium tin oxide film characterization using the classical hall effect, 144 Mcdonnell, 2016, Part 2: ultra-short pulse laser patterning of very thin indium tin oxide on glass substrates, Opt. Lasers Eng., 81, 70, 10.1016/j.optlaseng.2015.11.008 Nicolaas, 1974, Laser-induced electric breakdown in solids, IEEE J. Quantum Electron. N. C. for Biotechnology Information, PubChem Compound Summary for CID 16217324, Indium tin oxide (In1.69Sn0.15O2.85). Retrieved April 6, 2022https://pubchem.ncbi.nlm.nih.gov/compound/Indium-tin-oxide-_In1.69Sn0.15O2.85. Harbecke, 1986, Coherent and incoherent reflection and transmission of multilayer structures, Appl. Phys. B Photophys. Laser Chem., 39, 165, 10.1007/BF00697414 Byrnes Newville, 2016, LMFIT: non-linear least-square minimization and curve-fitting for Python Hallum, 2021, Time-resolved ultrafast laser ablation dynamics of thin film indium tin oxide, Opt. Express, 29, 30062, 10.1364/OE.434515 Petzold, 1983, Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations, SIAM J. Sci. Stat.Comput., 4, 136, 10.1137/0904010 Preissler, 2013, Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films, Phys. Rev. B, 88, 085305, 10.1103/PhysRevB.88.085305 Du, 2014, Highly transparent and conductive indium tin oxide thin films for solar cells grown by reactive thermal evaporation at low temperature, Appl. Phys. A, 117, 815, 10.1007/s00339-014-8436-x Hamberg, 1984, Band-gap widening in heavily Sn-doped In2O3, Phys. Rev. B, 30, 3240, 10.1103/PhysRevB.30.3240 Aljishi, 1990, Band tails in hydrogenated amorphous silicon and silicon-germanium alloys, Phys. Rev. Lett., 64, 2811, 10.1103/PhysRevLett.64.2811 Choi, 2001, Effect of film density on electrical properties of indium tin oxide films deposited by dc magnetron reactive sputtering, J. Vac. Sci. Technol. A Vac.Surf. Films, 19, 2043, 10.1116/1.1371326 Olson, 2018, Size effects on the cross-plane thermal conductivity of transparent conducting indium tin oxide and fluorine tin oxide thin films, IEEE Trans. Compon. Packag.Manuf. Technol., 9, 51, 10.1109/TCPMT.2018.2863648 Galwey, 2002, Application of the arrhenius equation to solid state kinetics: can this be justified?, Thermochim. Acta, 386, 91, 10.1016/S0040-6031(01)00769-9 Irmscher, 2014, On the nature and temperature dependence of the fundamental band gap of In2O3, physica status solidi (a), 211, 54, 10.1002/pssa.201330184 Morris, 2018, Optical absorption driven by dynamical symmetry breaking in indium oxide, Phys. Rev. B, 98, 161203, 10.1103/PhysRevB.98.161203 F. Scientific, Compound Summary for Indium tin oxide Retrieved September 27, 2022https://www.fishersci.de/shop/products/indium-tin-oxide-nanotek-r-99-5-thermo-scientific/11460910. E. Medvedovski, N. Alvarez, O. Yankov, M.K. Olsson, Advanced indium-tin oxide ceramics for sputtering targets, Ceram. Int. 34 (5) (2008) 1173–1182,doi:https://doi.org/10.1016/j.ceramint.2007.02.015. P.P. Edwards, A. Porch, M.O. Jones, D.V. Morgan, R.M. Perks, Basic materials physics of transparent conducting oxides, Dalton Trans. (19) (2004) 2995–3002, doi:10.1039/B408864F Marks, 2022, A review of laser ablation and dicing of Si wafers, Precis. Eng., 73, 377, 10.1016/j.precisioneng.2021.10.001 Garcia-Lechuga, 2014, Imaging the ultrafast Kerr effect, free carrier generation, relaxation and ablation dynamics of Lithium Niobate irradiated with femtosecond laser pulses, J. Appl. Phys., 116, 10.1063/1.4895833 Kim, 1994, Band structure of femtosecond-laser-pulse excited GaAs, Solid State Commun., 89, 119, 10.1016/0038-1098(94)90389-1 Fan, 1977, X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films, J. Appl. Phys., 48, 3524, 10.1063/1.324149