Static and transient optical properties of thin film indium tin oxide during laser excitation
Tài liệu tham khảo
Ginley, 2000, Transparent conducting oxides, MRS Bull., 25, 15, 10.1557/mrs2000.256
K. Ellmer, Past achievements and future challenges in the development of optically transparent electrodes, Nat. Photonics 6 (12) (2012) 809–817, doi:10.1038/nphoton.2012.282.
Harrison, 2010, A study of stitch line formation during high speed laser patterning of thin film indium tin oxide transparent electrodes, Appl. Surf. Sci., 256, 7276, 10.1016/j.apsusc.2010.05.064
Aleksandrova, 2013, Photolithography versus lift off process for patterning of sputtered indium tin oxide for flexible displays, Int. J. Thin Films Sci.Technol., 2, 67, 10.12785/ijtfst/020202
Du, 2014, Highly transparent and conductive indium tin oxide thin films for solar cells grown by reactive thermal evaporation at low temperature, Appl. Phys. A, 117, 815, 10.1007/s00339-014-8436-x
A. Rämer, O. Osmani, B. Rethfeld, Laser damage in silicon: energy absorption, relaxation, and transport, J. Appl. Phys. 116 (5) (2014) 053508, doi: 10.1063/1.4891633.
Kennedy, 1995, A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media: Part I-Theory, IEEE J. Quantum Electron., 31, 2241, 10.1109/3.477753
Gamaly, 2014, Transient optical properties of dielectrics and semiconductors excited by an ultrashort laser pulse, J. Opt. Soc. Am. B, 31, C36, 10.1364/JOSAB.31.000C36
de Aldana, 2005, Propagation of ablation channels with multiple femtosecond laser pulses in dielectrics: numerical simulations and experiments, J. Phys. D Appl. Phys., 38, 2764, 10.1088/0022-3727/38/16/004
Chen, 2002, Modeling of femtosecond laser-induced non-equilibrium deformation in metal films, Int. J. Solids Struct., 39, 3199, 10.1016/S0020-7683(02)00242-1
Zhigilei, 2000, Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes, J. Appl. Phys., 88, 1281, 10.1063/1.373816
Zhigilei, 2009, Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion, J. Phys. Chem. C, 113, 11892, 10.1021/jp902294m
M. Fox, Optical properties of solids, 2002.
Hamberg, 1986, Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows, J. Appl. Phys., 60, R123, 10.1063/1.337534
Liu, 2014, Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties, Appl. Phys. Lett., 105, 181117, 10.1063/1.4900936
Sun, 2013, Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses, Opt. Express, 21, 7858, 10.1364/OE.21.007858
Forouhi, 1986, Optical dispersion relations for amorphous semiconductors and amorphous dielectrics, Phys. Rev. B, 34, 7018, 10.1103/PhysRevB.34.7018
Forouhi, 1988, Optical Properties of Crystalline semicond, Phys. Rev. B, 38, 1865, 10.1103/PhysRevB.38.1865
Jellison, 1996, Parameterization of the optical functions of amorphous materials in the interband region, Appl. Phys. Lett., 69, 371, 10.1063/1.118064
Tauc, 1968, Optical properties and electronic structure of amorphous Ge and Si, Mater. Res. Bull., 3, 37, 10.1016/0025-5408(68)90023-8
Lucarini, 2005, Vol. 110
Noack, 1999, Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density, IEEE J. Quantum Electron., 35, 1156, 10.1109/3.777215
Keldysh, 1965, Ionization in the field of a strong electromagnetic wave, Sov. Phys. JETP, 20, 1307
Vogel, 2005, Mechanisms of femtosecond laser nanosurgery of cells and tissues, Appl. Phys. B, 81, 1015, 10.1007/s00340-005-2036-6
Willems van Beveren, 2014, Indium tin oxide film characterization using the classical hall effect, 144
Mcdonnell, 2016, Part 2: ultra-short pulse laser patterning of very thin indium tin oxide on glass substrates, Opt. Lasers Eng., 81, 70, 10.1016/j.optlaseng.2015.11.008
Nicolaas, 1974, Laser-induced electric breakdown in solids, IEEE J. Quantum Electron.
N. C. for Biotechnology Information, PubChem Compound Summary for CID 16217324, Indium tin oxide (In1.69Sn0.15O2.85). Retrieved April 6, 2022https://pubchem.ncbi.nlm.nih.gov/compound/Indium-tin-oxide-_In1.69Sn0.15O2.85.
Harbecke, 1986, Coherent and incoherent reflection and transmission of multilayer structures, Appl. Phys. B Photophys. Laser Chem., 39, 165, 10.1007/BF00697414
Byrnes
Newville, 2016, LMFIT: non-linear least-square minimization and curve-fitting for Python
Hallum, 2021, Time-resolved ultrafast laser ablation dynamics of thin film indium tin oxide, Opt. Express, 29, 30062, 10.1364/OE.434515
Petzold, 1983, Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations, SIAM J. Sci. Stat.Comput., 4, 136, 10.1137/0904010
Preissler, 2013, Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films, Phys. Rev. B, 88, 085305, 10.1103/PhysRevB.88.085305
Du, 2014, Highly transparent and conductive indium tin oxide thin films for solar cells grown by reactive thermal evaporation at low temperature, Appl. Phys. A, 117, 815, 10.1007/s00339-014-8436-x
Hamberg, 1984, Band-gap widening in heavily Sn-doped In2O3, Phys. Rev. B, 30, 3240, 10.1103/PhysRevB.30.3240
Aljishi, 1990, Band tails in hydrogenated amorphous silicon and silicon-germanium alloys, Phys. Rev. Lett., 64, 2811, 10.1103/PhysRevLett.64.2811
Choi, 2001, Effect of film density on electrical properties of indium tin oxide films deposited by dc magnetron reactive sputtering, J. Vac. Sci. Technol. A Vac.Surf. Films, 19, 2043, 10.1116/1.1371326
Olson, 2018, Size effects on the cross-plane thermal conductivity of transparent conducting indium tin oxide and fluorine tin oxide thin films, IEEE Trans. Compon. Packag.Manuf. Technol., 9, 51, 10.1109/TCPMT.2018.2863648
Galwey, 2002, Application of the arrhenius equation to solid state kinetics: can this be justified?, Thermochim. Acta, 386, 91, 10.1016/S0040-6031(01)00769-9
Irmscher, 2014, On the nature and temperature dependence of the fundamental band gap of In2O3, physica status solidi (a), 211, 54, 10.1002/pssa.201330184
Morris, 2018, Optical absorption driven by dynamical symmetry breaking in indium oxide, Phys. Rev. B, 98, 161203, 10.1103/PhysRevB.98.161203
F. Scientific, Compound Summary for Indium tin oxide Retrieved September 27, 2022https://www.fishersci.de/shop/products/indium-tin-oxide-nanotek-r-99-5-thermo-scientific/11460910.
E. Medvedovski, N. Alvarez, O. Yankov, M.K. Olsson, Advanced indium-tin oxide ceramics for sputtering targets, Ceram. Int. 34 (5) (2008) 1173–1182,doi:https://doi.org/10.1016/j.ceramint.2007.02.015.
P.P. Edwards, A. Porch, M.O. Jones, D.V. Morgan, R.M. Perks, Basic materials physics of transparent conducting oxides, Dalton Trans. (19) (2004) 2995–3002, doi:10.1039/B408864F
Marks, 2022, A review of laser ablation and dicing of Si wafers, Precis. Eng., 73, 377, 10.1016/j.precisioneng.2021.10.001
Garcia-Lechuga, 2014, Imaging the ultrafast Kerr effect, free carrier generation, relaxation and ablation dynamics of Lithium Niobate irradiated with femtosecond laser pulses, J. Appl. Phys., 116, 10.1063/1.4895833
Kim, 1994, Band structure of femtosecond-laser-pulse excited GaAs, Solid State Commun., 89, 119, 10.1016/0038-1098(94)90389-1
Fan, 1977, X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films, J. Appl. Phys., 48, 3524, 10.1063/1.324149