Hành Vi Tĩnh và Động của Bê Tông Thép Gạch Cốt Sợi Bazan Sau Chu Trình Đóng Băng - Giải Nhiệt

KSCE Journal of Civil Engineering - Tập 24 - Trang 3573-3583 - 2020
Changhui Gao1,2, Guangyin Du1,2, Qian Guo1,2, Zhongxun Zhuang1,2
1School of Transportation, Southeast University, Nanjing, China
2Jiangsu Key Laboratory of Urban Underground Engineering and Environmental Safety, Nanjing, China

Tóm tắt

Nghiên cứu này khảo sát ảnh hưởng của các chu kỳ đóng băng - giải nhiệt (f/t) lên hành vi tĩnh và động của mẫu xi măng - đất (PCS) và mẫu xi măng - đất cốt sợi bazan (BRCS), thông qua một loạt các thí nghiệm trong phòng thí nghiệm như thanh áp suất Hopkinson phân tách (SHPB), thí nghiệm sức nén không bị giới hạn (UCT), và thử nghiệm tốc độ xung siêu âm. Kết quả cho thấy việc bổ sung sợi bazan cải thiện tốc độ sóng, sức nén không bị giới hạn (UCS), sức nén động (DCS), và năng lượng hấp thụ (WS) của mẫu xi măng - đất trong chu kỳ f/t. Sự suy giảm sức mạnh UCS/DCS là nghiêm trọng đối với cả mẫu BRCS và PCS với 1 và 3 chu kỳ f/t, sau đó sức mạnh giảm chậm lại. Khi tốc độ biến dạng tăng từ 150 s−1 lên 190 s−1, sự phát triển sức mạnh của BRCS so với PCS dần dần chậm lại. Dưới các điều kiện chu kỳ f/t khác nhau, cả mối quan hệ dạng lũy thừa và mối quan hệ hàm mũ đều phù hợp tốt với dữ liệu thí nghiệm của tốc độ sóng và UCS/DCS cho DCS của các mẫu, nhưng UCS dường như chỉ phù hợp với mối quan hệ dạng lũy thừa. Việc bổ sung sợi bazan đã thay đổi chế độ hấp thụ năng lượng của mẫu dưới tải trọng tác động và có mối tương quan dương giữa DCS và WS.

Từ khóa

#Chu kỳ đóng băng - giải nhiệt #bê tông cốt sợi bazan #sức nén không bị giới hạn #sức nén động #năng lượng hấp thụ #tốc độ xung siêu âm.

Tài liệu tham khảo

Abdi MR, Mirzaeifar H (2016) Effects of discrete short polypropylene fibers on behavior of artificially cemented Kaolinite. International Journal of Civil Engineering 14(4B):253–262, DOI: https://doi.org/10.1007/s40999-016-0022-5 Anggraini V, Asadi A, Huat BBK, Nahazanan H (2015) Effects of coir fibers on tensile and compressive strength of lime treated soft soil. Measurement 59:372–381, DOI: https://doi.org/10.1016/j.measurement.2014.09.059 Arora S, Aydilek AH (2005) Class F fly-ash-amended soils as highway base materials. Journal of Materials in Civil Engineering 17(6):640–649, DOI: https://doi.org/10.1061/(ASCE)0899-1561(2005)17:6(640) ASTM D2487–2017 (2017) Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM D2487–2017, ASTM International, West Conshohocken, PA, USA Beckett CTS, Smith JC, Ciancio D, Augarde CE (2015) Tensile strengths of flocculated compacted unsaturated soils. Géotechnique Letters 5:254–260, DOI: https://doi.org/10.1680/jgele.15.00087 Borinaga-Treviño R, Orbe A, Canales J, Norambuena-Contreras J (2020) Experimental evaluation of cement mortars with recycled brass fibres from the electrical discharge machining process. Construction and Building Materials 246:118522, DOI: https://doi.org/10.1016/j.conbuildmat.2020.118522 Boz A, Sezer A (2018) Influence of fiber type and content on freeze-thaw resistance of fiber reinforced lime stabilized clay. Cold Regions Science and Technology 151:359–366, DOI: https://doi.org/10.1016/j.coldregions.2018.03.026 Chen XD, Ge LM, Zhou JK, Wu SX (2015) Experimental study on split Hopkinson pressure bar pulse-shaping techniques for concrete. Journal of Materials in Civil Engineering 28(5):04015196, DOI: https://doi.org/10.1016/j.jobe.2019.100748 Choobbasti AJ, Samakoosh MA, Kutanaei SS (2019) Mechanical properties soil stabilized with nano calcium carbonate and reinforced with carpet waste fibers. Construction and Building Materials 211:1094–1104, DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.306 Consoli CN, Prietto DM, Ulbrich LA (1998) Influence of fiber and cement addition on behavior of sandy soil. Journal of Geotechnical and Geoenvironmental 124(12):1211–1214, DOI: https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1211) Eigenbrod KD (1996) Effects of cyclic freezing and thawing on volume changes and permeabilities of soft fine-grained soils. Canadian Geotechnical Journal 33(4):529–537, DOI: https://doi.org/10.1139/t96-079-301 Galán-Marín C, Rivera-Gómez C, Bradley F (2013) Ultrasonic, molecular and mechanical testing diagnostics in natural fibre reinforced, polymer-stabilized earth blocks. International Journal of Polymer Science 2013, DOI: https://doi.org/10.1155/2013/130582 Gao CH, Ma QY (2017) Experiment and analysis on performance of compression and tension strength for basalt fiber and sand reinforced cement-soil. Science Technology and Engineering 17(2):262–266 GB/T 50123–2019 (2019) Standard for geotechnical testing method of China. GB/T 50123–2019, Chinese Standard Press, Beijing, China Ghadakpour M, Choobbasti AJ, Kutanaei SS (2020) Investigation of the Kenaf fiber hybrid length on the properties of the cement-treated sandy soil. Transportation Geotechnics 22:100301, DOI: https://doi.org/10.1016/j.trgeo.2019.100301 Jamshidi RJ, Lake CB, Barnes CL (2015) Examining freeze/thaw cycling and its impact on the hydraulic performance of cement-treated silty sand. Cold Regions Science and Technology 29(3):04014014, DOI: https://doi.org/10.1061/(ASCE)CR.1943-5495.0000081 Jamshidi RJ, Lake CB, Gunning P, Hills CD (2016) Effect of freeze/thaw cycles on the performance and microstructure of cement-treated soils. Journal of Materials in Civil Engineering 28(12):04016162, DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001677 JGJ/T 233–2011 (2011) Specification for mix proportion design of cement soil. JGJ/T 233–2011, Chinese Standard Press, Beijing, China Jin LX, Song WM, Shu X, Huang BS (2018) Use of water reducer to enhance the mechanical and durability properties of cement-treated soil. Construction and Building Materials 159:690–694, DOI: https://doi.org/10.1016/j.conbuildmat.2017.10.120 Kang M, Lee JS (2015) Evaluation of the freezing-thawing effect in sand-silt mixtures using elastic waves and electrical resistivity. Cold Regions Science and Technology 113:1–11, DOI: https://doi.org/10.1016/j.coldregions.2015.02.004 Khan Z, Majid A, Cascante G, Hutchinson DJ, Pezeshkpour P (2006) Characterization of a cemented sand with the pulse-velocity method. Canadian Geotechnical Journal 43(3):294–309, DOI: https://doi.org/10.1139/t06-008 Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proceedings of the Physical Society: Section B 62(11):676–700, DOI: https://doi.org/10.1088/0370-1301/62/11/302 Kutanaei SS, Choobbasti AJ (2017) Effects of nanosilica particles and randomly distributed fibers on the ultrasonic pulse velocity and mechanical properties of cemented sand. Journal of Materials in Civil Engineering 29(3):040162302, DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001761 Li WM, Xu JY, Zhai Y, Li Q (2009) Mechanical properties of carbon fiber reinforced concrete under impact loading. China Civil Engineering Journal 42(2):24–31 (in Chinese) Liu JX, Chen ZF, Xu WF, Chen G (2012) Experimental study of dynamic properties of compacted clay under different compaction degrees and water contents. Rock and Soil Mechanics 33(6):1631–1639 Liu X, Qin H, Lan HX (2020) On the relationship between soil strength and wave velocities of sandy loess subjected to freeze-thaw cycling. Soil Dynamics and Earthquake Engineering 136:106216, DOI: https://doi.org/10.1016/j.soildyn.2020.106216 Liu JK, Wang TL, Tian YH (2010) Experimental study of the dynamic properties of cement- and lime-modified clay soils subjected to freeze-thaw cycles. Cold Regions Science and Technology 61(1):29–33, DOI: https://doi.org/10.1016/j.coldregions.2010.01.002 Luo LH, Ma W, Zhang ZQ, Zhuang YL, Zhang YN, Yang JO, Cao XC, Liang ST, Mu YH (2017) Freeze/thaw-induced deformation monitoring and assessment of the slope in permafrost based on terrestrial laser scanner and GNSS. Remote Sensing 9(3):198, DOI: https://doi.org/10.3390/rs9030198 Ma QY, Gao CH (2018a) Effect of basalt fiber on the dynamic mechanical properties of cement-soil in SHPB test. Journal of Materials in Civil Engineering 30(8):4018185, DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002386 Ma QY, Gao CH (2018b) Energy absorption and fractal characteristics of basalt fiber-reinforced cemented soil under impact loads. Rock and Soil Mechanics 39(11):3921–3928+3968 Ma QY, Gao CH (2020) Effects of basalt fiber and sand on the microstructure and tensile and compressive strength of cement-soil. Journal of Basic Science and Engineering 28(1):148–159 Mohammed TU, Rahman MN (2016) Effect of types of aggregate and sand-to-aggregate volume ratio on UPV in concrete. Construction and Building Materials 125:832–841, DOI: https://doi.org/10.1016/j.conbuildmat.2016.08.102 Moon SW, Vinoth G, Subramanian S, Kim J, Ku T (2020) Effect of fine particles on strength and stiffness of cement treated sand. Granular Matter 22(9), DOI: https://doi.org/10.1007/s10035-019-0975-6 Ni WK, Shi HQ (2014) Influence of freezing-thawing cycles on microstructure and shear strength of loess. Journal of Glaciology and Geocryology 36(4):922–927 Orakoglu ME, Liu JK (2017) Effect of freeze-thaw cycles on triaxial strength properties of fiber-reinforced clayey soil. KSCE Journal of Civil Engineering 21(9):2128–2140, DOI: https://doi.org/10.1007/s12205-017-0960-8 Pang WT, Shen XD (2012) Influence of freeze-thaw cycles on mechanical properties of cement soil. Highway 9:30–32 Qin X, Shen AQ, Guo YC (2016) Experimental study on road performance of basalt fiber reinforced bitumen mastics. Journal of Building Materials 19(4):659–664 Ralegaonkar R, Gavali H, Aswath P, Abolmaali S (2018) Application of chopped basalt fibers in reinforced mortar: A review. Construction and Building Materials 164:589–602, DOI: https://doi.org/10.1016/j.conbuildmat.2017.12.245 Roshan K, Choobbasti AJ, Kutanaei SS (2020) Evaluation of the impact of fiber reinforcement on the durability of lignosulfonate stabilized clayey sand under wet-dry condition. Transportation Geotechnics 23:100359, DOI: https://doi.org/10.1016/j.trgeo.2020.100359 Sharma R, Baxter C, Jander M (2011) Relationship between shear wave velocity and stresses at failure for weakly cemented sands during drained triaxial compression. Soils and Foundations 51(4):761–771 Tajdini M, Bonab MH, Golmohamadi S (2018) An experimental investigation on effect of adding natural and synthetic fibres on mechanical and behavioural parameters of soil-cement materials. International Journal of Civil Engineering 16(4B):353–370, DOI: https://doi.org/10.1007/s40999-016-0118-y Tedasco JW, Ross CA (1998) Strain-rate-dependent constitutive equations for concrete. Journal of pressure Vessel Technology 120(4):398–405, DOI: https://doi.org/10.1115/1.2842350 Tran KQ, Satomi T, Takahashi H (2018) Improvement of mechanical behavior of cemented soil reinforced with waste cornsilk fibers. Construction and Building Materials 178:204–210, DOI: https://doi.org/10.1016/j.conbuildmat.2018.05.104 Tran KQ, Satomi T, Takahashi H (2019) Tensile behaviors of natural fiber and cement reinforced soil subjected to direct tensile test. Journal of Building Engineering 24:100748, DOI: https://doi.org/10.1016/j.jobe.2019.100748 Vinoth G, Moon SW, Moon J, Ku T (2018) Early strength development in cement-treated sand using low-carbon rapid-hardening cements. Soils and Foundations 58(5):1200–1211, DOI: https://doi.org/10.1016/j.sandf.2018.07.001 Wang B, Li XB, Yin TB, Ma CD, Yin ZQ, Li ZG (2010) Split Hopkinson pressure bar (SHPB) experiments on dynamic strength of water-saturated sandstone. Chinese Journal of Rock Mechanics and Engineering 29(5):1003–1009 (in Chinese) Wang TL, Liu JK, Tian YH (2011) Static properties of cement-and lime-modified soil subjected to freeze-thaw cycles. Rock and Soil Mechanics 32(1):193–198 Wu N, Zhang C, Maimaitiyusupu S, Zhu ZD (2019) Investigation on properties of rock joint in compression dynamic test. KSCE Journal of Civil Engineering 23(9):3854–3863, DOI: https://doi.org/10.1007/s12205-019-1779-2 Xue ZG, Hu SS (2008) Dynamic behavior of cement mortar under active confinement. Explosion and Shock Waves 28(6):561–564 Yarbaşı N, Kalkan E, Akbulut S (2007) Modification of the geotechnical properties, as influenced by freeze-thaw, of granular soils with waste additives. Cold Regions Science and Technology 48(1):44–54, DOI: https://doi.org/10.1016/j.coldregions.2006.09.009 Zhang MX, Jian WB, Chen Y (2005) The sonic wave characteristics of cement soil and its application. Journal of Fuzhou University (Natural Science) 33(2):223–226 Zhang Y, Johnson AE, White DJ (2019) Freeze-thaw performance of cement and fly ash stabilized loess. Transportation Geotechnics 21:100279, DOI: https://doi.org/10.1016/j.trgeo.2019.100279 Zhang Z, Ma W, Qi JL (2013) Structure evolution and mechanism of engineering properties change of soil under effect of freeze-thaw cycle. Journal of Jilin University (Earth Science Edition) 43(6):1904–1914 Zhao YS, Wang EH, Cruse RM, Chen XW (2017) Characterization of seasonal freeze-thaw and potential impacts on soil erosion in northeast China. Canadian Journal of Soil Science 92(3):567–571 Zhu DJ, Ou YF (2016) Effects of strain rate and temperature on mechanical properties of basalt fiber bundle. Journal of Building Materials 19(4):742–745