Static Weyssenhoff Fluid Sphere Models in Einstein–Cartan Theory of Gravitation

Pleiades Publishing Ltd - Tập 29 - Trang 10-18 - 2023
L. N. Katkar1,2, D. R. Phadatare2
1Former Head Department of Mathematics, Shivaji University, Kolhapur, India
2, Balasaheb Desai College, Patan, India

Tóm tắt

Three physically reasonable static Weyssenhoff fluid sphere models have been obtained by solving the relevant field equations of the Einstein–Cartan theory of gravitation, when Weyssenhoff fluid is the source of spin and gravitation. The spin of the gravitating matter influences the fields of these fluid sphere models. The gravitational field of two of the models is proved to be of Petrov type $$D$$ , while the interpretation of the gravitational field of the remaining model fails due to the influence of the spin component $$s_{0}$$ . One of the fluid sphere models is accelerating and rotating, while the other two are only rotating. Gravity in each of these models repels and prevents the collapse.

Tài liệu tham khảo

E. Cartan, Ann. Ec. Norm. Super 40, 325 (1923). A. Trautman, “On the structure of the Einstein–Cartan equations,” Symposia Mathematica 12, 139 (1973). A. Trautman, “Spin and torsion may avert gravitational singularities,” Nature (Phys. Sci.) 242, 7 (1973). F. W. Hehl, P. Von der Heyde, and G. D. Kerlik, “General relativity with spin and torsion and its deviations from Einstein’s theory,” Phys. Rev. D 10, 1066 (1974). F. W. Hehl, P. Von der Heyde, G. D. Kerlik, and J. M. Nester, “General relativity with spin and torsion: Foundations and prospects,” Rev. Mod. Phys 48, 393 (1976). A. R. Prasanna, “Static fluid spheres in Einstein–Cartan theory,” Phys. Rev. D 11, 2076 (1975). T. W. B. Kibble, “Lorentz invariance and the gravitational field,” J. Math. Phys. 2, 212 (1961). D. W. Sciama, in Recent Development in General Relativity (Polish Scientific Publishers, Warsaw, 1962), p. 415. A. Trautman, “On the Einstein–Cartan equations. I,” Bull. Acad. Polon. Sci., Ser. Sci. Math. Astron. Phys. 20, 184 (1972). F. W. Hehl, “Spin and torsion in general relativity: I. Foundations,” Gen. Rel. Grav. 4, 333 (1973). A. R. Prasanna, “Static cylinder of perfect fluid with nonzero spin density,” Phys. Rev. D 11, 2083 (1975). A. K. Raychaudhuri, “Tachyons and gravitation,” J. Math. Phys 15, 856 (1974). D. Tsoubelis, “Bianchi types \(VI_{0}\) and \(VII_{0}\) cosmological models with spin and torsion,” Phys. Rev. D 20, 3004 (1979). B. Kuchowicz, “Cosmology with spin and torsion. Part II. Spatially homogeneous aligned spin models with the Weyssenhoff fluid,” Acta Cosmologica 4, 67 (1976). J. B. Griffiths and S. Jogia, “A spin-coefficient approach to Weyssenhoff fluids in Einstein–Cartan theory,” Gen. Rel. Grav 14, 137 (1982). M. Sharif and T. Iqbal, “Non-static spherically symmetric perfect fluid solutions,” Chi. J. Phys 3, 40 (2002). L. N. Katkar, “An exact spherically symmetric space-time in Einstein–Cartan theory,” Astrophys. Space Sci. 326, 19 (2010). L. N. Katkar, “Einstein–Cartan theory of gravitation: Kinematical parameters and Maxwell equations,” Int. J. Theor. Phys. 54, 951 (2015). L. N. Katkar and V. K. Patil, “Static Conformally flat spherically symmetric space-time in Einstein–Cartan theory of gravitation,” Int. J. Theor. Phys. 54, 1050 (2011). L. N. Katkar and D. R. Phadatare, “A static spherically symmetric solution in Einstein–Cartan theory of gravitation,” Ind. J. Phys. 93, 543 (2019). L. N. Katkar and D. R. Phadatare, “Non-static conformally flat spherically symmetric space-times in Einstein–Cartan theory,” Chi. J. Phys 59, 298 (2019). L. N. Katkar and D. R. Phadatare, “Weyssenhoff fluid sphere models in Einstein–Cartan theory,” Can. J. Phys 99 (3), 646 (2021). E. T. Newman and R. Penrose, “An Approach to gravitational radiation by a method of spin coefficients,” J. Math. Phys 3, 566 (1962). S. Jogia and J. B. Griffiths, “A Newman-Penrose type formalism for space-times with torsion,” Gen. Rel. Grav. 12, 597 (1980). Yu. N. Obukhov and V A Korotky, “The Weyssenhoff fluid in Einstein–Cartan theory,” Class. Quantum Grav. 4, 1633 (1987). H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt, Exact Solutions of Einstein’s Field Equations, 2nd ed. (Cambridge University Press, 2003). Stefan Hofmann, Florian Niedermann, and Robert Schneider, “Interpretation of the Weyl tensor,” Phys. Rev. D. 88, 064047 (2013).