Static Regulation and Dynamic Evolution of Single‐Atom Catalysts in Thermal Catalytic Reactions

Advanced Science - Tập 6 Số 3 - 2019
Hongliang Li1, Menglin Wang1, Laihao Luo1, Jie Zeng1
1Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026 P.R. China

Tóm tắt

AbstractSingle‐atom catalysts provide an ideal platform to bridge the gap between homogenous and heterogeneous catalysts. Here, the recent progress in this field is reported from the perspectives of static regulation and dynamic evolution. The syntheses and characterizations of single‐atom catalysts are briefly discussed as a prerequisite for catalytic investigation. From the perspective of static regulation, the metal–support interaction is illustrated in how the supports alter the electronic properties of single atoms and how the single atoms activate the inert atoms in supports. The synergy between single atoms is highlighted. Besides these static views, the surface reconstruction, such as displacement and aggregation of single atoms in catalytic conditions, is summarized. Finally, the current technical challenges and mechanistic debates in single‐atom heterogeneous catalysts are discussed.

Từ khóa


Tài liệu tham khảo

10.1038/ncomms11510

10.1039/C3CS60221D

10.1016/j.nantod.2013.02.006

10.1038/s41929-018-0090-9

10.1002/adma.201505281

10.1038/nature24640

10.1021/jacs.7b09314

10.1038/srep07238

10.1038/nchem.1095

10.1002/adma.201704720

10.1038/s41929-017-0008-y

10.1021/cs400979q

10.1021/jacs.7b11010

10.1021/acscentsci.7b00105

10.1038/nature00791

10.1126/science.1101077

10.1126/science.1192368

10.1002/aenm.201701343

10.1038/nchem.2915

10.1038/s41570-018-0010-1

10.1002/anie.201403953

10.1126/science.1215864

10.1021/jacs.7b00452

10.1021/jacs.6b03339

10.1002/anie.201604802

10.1016/j.chempr.2017.09.014

10.1002/adma.201803498

10.1021/ja110073u

10.1126/science.1240148

10.1038/ncomms9550

10.1038/s41565-018-0167-2

10.1002/smtd.201700286

10.1016/j.joule.2018.06.019

10.1021/acscatal.6b01534

10.1002/adma.201705112

10.1021/acs.nanolett.8b01059

10.1038/s41557-018-0125-5

10.1021/cs300252g

10.1038/nature21672

10.1021/jp4070328

10.1002/anie.201509241

10.1002/adma.201705369

10.1126/science.aao2109

10.1021/acscatal.5b00842

10.1002/cssc.201501506

10.1021/ja408574m

10.1021/cs500740u

10.1038/nchem.2740

10.1039/C5EE00751H

10.1021/jacs.7b05213

10.1016/j.catcom.2015.11.021

10.1002/anie.201505073

10.1038/ncomms10922

10.1021/ja407552k

10.1038/ncomms10667

10.1021/jacs.6b13100

10.1021/jacs.6b02692

10.1021/ja3120136

10.1002/anie.201607885

10.1038/s41467-017-01259-z

10.1021/jacs.5b06485

10.1126/science.aaf8800

10.1021/cm203812v

10.1126/science.aaf5251

10.1021/jacs.7b01471

10.1038/ncomms6634

10.1002/adma.201706758

10.1021/ja401847c

10.1002/chem.201202514

10.1023/A:1019105310221

10.1126/science.aac6368

10.1021/jacs.7b07093

10.1002/anie.201309248

10.1007/s11244-011-9677-y

10.1002/chem.201406664

10.1126/science.aal3439

10.1021/acscatal.5b00995

10.1039/C7EN00678K

10.1021/acscentsci.7b00160

10.1021/jacs.7b10394

10.1002/anie.201701089

10.1126/science.1260526

10.1080/01614940.2012.627224

10.1038/s41565-018-0089-z

10.1126/science.1115800

10.1016/j.jcat.2016.02.023

10.1126/science.1253150

10.1038/s41560-017-0015-x

10.1016/j.chempr.2018.01.019

10.1021/ja305048p

10.1038/ncomms6783

10.1021/cs200236q

10.1038/s41467-018-02819-7

10.1021/jacs.7b01602

10.1038/ncomms14036

10.1021/ja402063v

10.1021/jacs.5b09052

10.1038/ncomms7511

10.1021/jacs.6b04187

10.1073/pnas.1605649113

10.1038/s41467-018-03012-6