State of the Art of CT Detectors and Sources: A Literature Review

E. Shefer1, Ami Altman2, Rolf Behling3, Raffy Goshen2, L. Gregorian2, Yalon Roterman2, Igor Uman2, N. Wainer2, Yoad Yagil2, O. Zarchin2
1Philips Healthcare, 595 Miner Road, Cleveland, OH, 44143, USA
2Philips Healthcare, Advanced Technology Center, MATAM, Philips Building 34, P.O. Box 325, 31004, Haifa, Israel
3Philips Medical Systems DMC GmbH, P.O. Box 103, Room A412, Roentgenstrasse 24, 22335, Hamburg, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hsieh J. Computed tomography: principles, design, artifacts, and recent advances. SPIE 2003;155–160:199–200, ISBN 0-8194-4425-1.

Prokop M. Multislice CT: technical principles and future trends. Eur Radiol. 2003;13(5):M3–13.

Hou Y, Xu S, Guo W et al. The optimal dose reduction level using iterative reconstruction with prospective ECG-triggered coronary CTA using 256-slice MDCT. Eur J Radiol. 2012;6:1266–74.

Neroladaki A, Botsikas D, Boudabbous, et al. Computed tomography of the chest with model-based iterative reconstruction using a radiation exposure similar to chest X-ray examination: preliminary observations. Eur Radiol. 2013;3:360–6.

Buzug TM. Computed tomography: from photon statistics to modern cone-beam CT. Berlin: Springer; 2008. p. 476–79 and references therein.

Hsiao EM, Rybicki FJ, Steigner M. CT coronary angiography: 256-slice and 320-detector row scanners. Curr Cardiol Rep. 2010;12(1):68–75.

Yester MV, Barnes GT. Geometrical limitations of computed tomography (CT) scanner resolution. Optical instrumentation in medicine VI. SPIE. 1977;127:296–303.

Goldman LW. Principles of CT and the evolution of CT technology. In: Goldman LW, Fowlkes JB, editors. Categorical course in diagnostic radiology physics: CT and US crosssectional imaging. Oak Brook: RSNA; 2000. p. 124.

Toshiba, Yasuo S, Nasu-gun, Hiroaki M, Hiroshi A. US Patent 6,396,898. 2001.

Siemens: Von Der Haar T, Kohl G, Bruder H. Method for manufacturing detector system for a computed tomography apparatus. US Patent 6,137,859. 2000.

GE: Hoffman DM: Solid-state CT detector modules with improved scintillator/diode coupling. US Patent 6,717,150 B2. 2004.

Luhta R, Chappo M, Harwood B, et al. A new 2D-tiled detector for multislice CT. Med Imaging Phys Med Imaging Proc SPIE. 2006; 6142:275–86.

Rose A. A unified approach to the performance of photographic film, television pick-up tubes, and the human eye. J Soc Motion Pict Telev Eng. 1946;47:273–94.

Peschmann KR. Radiology of the skull and brain, technical aspects of computed tomography, vol-5. In: Newton TH, Potts DG, editors. Saint Louis: The C.V. Mosby company; 1981. p. 4112–26.

Dainty JC, Show R. Image science: principles, analysis and evaluation of photographic-type imaging processes. London: Academic; 1974.

IEC 62220-1 (2003).

Granfors PR in AAPM. DQE methodology—step by step. 2003. http://www.aapm.org/meetings/03AM/pdf/9811-91358.pdf . Accessed Oct 2012.

Sameia E, Flynn MJ. An experimental comparison of detector performance for direct and indirect digital radiography systems. Med Phys. 2003;30(4):608–22. and references therein.

Ranger NT, Samei E, Dobbins JT, et al. Assessment of detective quantum efficiency: intercomparison of a recently introduced international standard with prior methods. Radiology. 2007;243(3):785–95.

•  Ranger NT, Mackenzie A, Honey ID, et al. Extension of DQE to include scatter, grid, magnification, and focal spot blur: a new experimental technique and metric. Med Imaging Phys Med Imaging Proc SPIE 2009; 7258(72581A):1–12.

Hu H, Besson GM, He HD. Detector z-axis gain non-uniformity correction in a computed tomography system. US Patent 5,734,691. 1998.

Wu X, LeBlanc J, Walter DJ. Method and apparatus for calibrating detector spectral response. US Patent US 6,848,827 B2. 2005.

Stierstorfer K, Stoeger-Haselboeck T. Method for determining correction coefficients for detector channels for a computed tomography. US Patent: US 7,056,018 B2. 2006.

Rouge’e A, Picard C, Ponchut C, et al. Geometrical calibration of X-ray imaging chains for three-dimensional reconstruction. Comput Med Imaging Graph 1993; 17(4–5):295–300.

Carmi R, Braunstein D, Shapiro O. Resolution enhancement of X-ray CT by spatial and temporal MLEM deconvolution correction. Nucl Sci Symp Conf Rec. 2004;5:2765–8.

Hsieh J, Gurmen OE, King KF. Investigation of a solid-state detector for advanced computed tomography. IEEE Trans Med Imaging. 2000;19(9):930–40.

Blasse G, Grabmaier BC. Luminescent materials. Berlin: Springer; 1994.

Rodnyi PA. Physical processes in inorganic scintillators. New York: CRC Press; 1997.

•  Ronda CR, Srivastava AM. Scintillators. In: Ronda CR, editors. Luminescence: from theory to applications. Weinheim: Wiley; 2008. p. 105–32.

van Eijk CWE. Inorganic scintillators in medical imaging. Phys Med Biol. 2002;47:R85–106.

Nikl M. Scintillation detectors for X-rays. Meas Sci Technol. 2006;17:R37–54.

Rossner W, Grabmaier BC. Phosphors for X-ray detectors in computed tomography. J Lumin. 1991;48–49:29–36.

Dorenbos P. Light output and energy resolution of Ce3 + -doped scintillators. Nucl Instrum Methods Phys Res A. 2002;486:208–13.

Yamada H, Suzuki A, Uchida Y, et al. A scintillator Gd2O2S:Pr, Ce, F for X-ray computed tomography. J Electrochem Soc. 1989;136:2713–6.

Duclos SJ, Greskovich CD, Lyons RJ, et al. Development of the HiLight™ scintillator for computer tomography medical imaging. Nucl Instrum Methods Phys Res A. 2003;505:68–71.

• Vartuli JS, Lyons RJ, Vess CJ, et al. GE healthcare’s new computed tomography scintillator—gemstone. In: Presented at the 2008 symposium on radiation measurement and applications. Berkeley, 2–5 June 2008.

Melcher CL. Perspectives on the future development of new scintillators. Nucl Instrum Methods Phys Res A. 2005;537:6–14.

Kanai T, Satoh M, Miura I. Characteristics of a nonstoichiometric gd3 + δ(Al, Ga)5−δO12:Ce garnet scintillator. J Am Ceram Soc. 2008;91:456–62.

Ryzhikov V, Starzhinskiy N, Gal’chinetskii L, et al. New semiconductor scintillators ZnSe(Te, O) and integrated radiation detectors based thereon. IEEE Trans Nucl Sci Vol. 2001;48(3):356–9.

Cherepy NJ, Hull G, Drobshoff SA, et al. Strontium and barium iodide high light yield scintillators. Appl Phys Lett. 2008;92:083508-1–3.

Luhta R, Mattson R, Taneja N, et al. Back illuminated photodiodes for multislice CT. Proc SPIE. 2003;5030:235–45.

Utrup S, Chappo M, Harwood B, et al. Design and performance of a 32-slice CT detector system using back-illuminated photodiodes. Proc SPIE. 2004;5368:40–51.

• Ji F, Juntunen M, Hietanen I: Electrical crosstalk in front-illuminated photodiode array with different guard ring designs for medical CT applications. Nucl Instrum Methods Phys Res Sect A 2009; 607(1):150–3.

Analog Devices. 128 channel, 24-bit current to digital ADC—ADAS1128. http://www.analog.com . Accessed Oct 2012.

United States Patent No. 5,741,733, Bertagnolli et al. Method for the production of three-dimensional circuit arrangement. Siemens Aktiengesellschaft, Munich, 21 April 1998.

Johns PC, Yaffe MJ. Coherent scatter in diagnostic radiology. Med Phys. 1983;10:40–50.

• Engel KJ, Bäumer C, Wiegert J et al. Spectral analysis of scattered radiation in CT. Proc SPIE. 2008;6913:69131R.

Compton AH. A quantum theory of the scattering of X-rays by light elements. Phys Rev. 1923;21:483–502.

Wiegert J, Engel KJ, Herrmann C. Impact of scattered radiation on spectral CT. Proc SPIE. 2009;7258:72583X.

Glover GH. Compton scatter effects in CT reconstruction. Med Phys. 1982;9:860–7.

Engel KJ, Herrmann C, Zeitler G. X-ray scattering in single- and dual-source CT. Med Phys. 2008;35:318–32.

Rührnschopf EP, Klingenbeck K. A general framework and review of scatter correction methods in X-ray cone-beam computerized tomography. Part 1: scatter compensation approaches. Med Phys. 2011;38:4296–311.

Rührnschopf EP, Klingenbeck K. A general framework and review of scatter correction methods in cone beam CT. Part 2: scatter estimation approaches. Med Phys. 2011;38:5186–99.

Aichinger H, Dierker J, Joite-Barfuss S, et al. Radiation exposure and image quality in X-ray diagnostic radiology. In: Aichinger H, editor. New York: Springer; 2004. p. 59–65.

Vogtmeier G, Dorscheid R, Engel KJ, et al. Two-dimensional anti-scatter-grids for computed tomography detectors. Proc SPIE. 2008;6913:691359.

Wiegert J, Bertram M, Wiesner S, et al. Improved CT image quality using a new fully physical imaging chain. Proc SPIE. 2010;7622:76221I.

Rinkel J, Gerfault L, Esteve F, et al. Coupling the use of anti-scatter grid with analytical scatter estimation in cone beam CT. Proc SPIE. 2007;6510:65102E.

Alvarez RE, Macovski A. Energy-selective reconstruction in X-ray computerized tomography. Phys Med Biol. 1976;21(5):733–44.

Brooks RA, Di Chiro G. Split detector computed tomography: a preliminary report. Radiology. 1978;126(1):255–7.

•• Carmi R, Naveh G, Altman A. Material separation with dual-layer CT. Presented at the IEEE-MIC Conference. Puerto Rico: Wyndham El Conquistador; 23–29 Oct 2005.

Altman A, Shapiro O, Levene S, et al. Double decker detector for spectral CT. US States Patent US 7,968,853. 2006.

Kelcz F, Joseph PM, Hilal SK. Noise considerations in dual energy CT scanning. Med Phys. 1979;6(5):418–25.

• Goshen L, Sosna J, Carmi R, et al. An Iodine-Calcium Separation Analysis and Virtually Non-Contrasted Image Generation Obtained with Single Source Dual Energy MDCT. IEEE Nucl Sci Symp Conf Rec. 2008;NSS ’08:3868–70.

McGregor DS, Hermon H. Room-temperature compound semiconductor radiation detectors. Nucl Instrum Methods Phys A. 1997;395(1):101–24.

Overdick M, Baumer C, Engel KJ et al. Towards direct conversion detectors for medical imaging with X-rays. In: IEEE 2008 Nucl. Sci. Symp. Conf. Rec. (NSS 2008), p. 1527–35. doi: 10.1109/NSSMIC.2008.4775117 .

Steadman R, Herrmann C, Mülhens O, et al. ChromAIX: a high-rate energy-resolving photon-counting ASIC for spectral computed tomography. Proc SPIE 2010;7622:762220-1–8.

Iwanczyk JS, Nygård E, Meirav O, et al. Photon counting energy dispersive detector arrays for X-ray imaging. IEEE Trans Nucl Sci. 2009;56(3):535–42. doi: 10.1109/TNS.2009.2013709 .

Ballabriga R, Campbell M, Heijne EHM, et al. The Medipix3 prototype, a pixel readout chip working in single photon counting mode with improved spectrometric performance. IEEE Trans Nucl Sci 2007; NS-54:1824–29.

Fink J, Kraft E, Krüger H, et al. Comparison of pixellated CdZnTe, CdTe and Si Sensors with the Simultaneously Counting and Integrating CIX ASIC. IEEE Trans Nucl Sci. 2009;56(6):3819–27.

del Risco Norrlid L, Fredenberg E, Hemmendorff M, et al. Imaging of small children with a prototype for photon counting tomosynthesis. Proc SPIE 2009;7258:72581O-1–9.

Shikhaliev PM. Energy-resolved CT: first experimental results. Phys Med Biol. 2008;53:5595–613. doi: 10.1088/0031-9155/53/20/002 .

Le HQ, Ducote JL, Molloi S. Radiation dose reduction using a CdZnTe-based computed tomography system: comparison to flat-panel detectors. Med Phys. 2010;37(3):1225–36.

Wang X, Meier D, Mikkelsen S, et al. MicroCT with energy-resolved photon-counting detectors. Phys Med Biol. 2011;56(9):2791–816. doi: 10.1088/0031-9155/56/9/011 .

•• Schlomka JP, Roessl E, Dorscheid R, et al. Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Phys Med Biol 2008;53:4031–47.

Firsching M, Butler AP, Scott N. Contrast agent recognition in small animal CT using the Medipix2 detector. Nucl Instrum Methods Phys Res Sect A. 2009;607(1):179–82.

Kappler S, Hannemann T, Kraft E. First results from a hybrid prototype CT scanner for exploring benefits of quantum-counting in clinical CT (Proceedings Paper), SPIE 2012;8313:83130X-83130X-11, ISBN: 9780819489623. doi: 10.1117/12.911295 .

Taguchi K, Kudo H, Srivastava S et al. Enabling photon counting clinical X-ray CT, IEEE NSS MIC 2009;M13-45:3581–85.

Roessl E, Proksa R. K-edge imaging in X-ray computed tomography using multi-bin photon counting detectors. Phys Med Biol. 2007;52:4679–96.

Schardt P, Deuringer J, Freudenberger J, et al. New X-ray tube performance in computed tomography by introducing the rotating envelope tube technology. Med Phys. 2004;31(9):2699–706.

Behling R, Hauttmann S, Maring W. High current X-ray source technology for medical imaging. Vacuum Electronics Conference (IVEC) IEEE Int. 2010;475–6. doi: 10.1109/IVELEC.2010.5503464 .

•  Frutschy K, Neculaes B, Inzinna L et al. High Power distributed X-ray source. Proc SPIE 2010;7622:76221H. doi: 10.1117/12.843743 . Novel CT concept.