Đánh giá hiện trạng về việc sử dụng vật liệu thải trong việc giảm thiểu hiện tượng lỏng hóa đất

Jithin P. Zachariah1, Ravi S. Jakka1
1Department of Earthquake Engineering, Indian Institute of Technology Roorkee, Roorkee, India

Tóm tắt

Tính bền vững đã thu hút sự chú ý đáng kể từ cộng đồng kỹ thuật toàn cầu trong những năm gần đây. Việc khám phá việc sử dụng vật liệu bền vững để cải thiện sức mạnh của đất và giảm thiểu các sự cố lỏng hóa đất đã được tiến hành trong vài thập kỷ qua. Bài báo này cung cấp một đánh giá chi tiết về ứng dụng của vật liệu thải để chống lại hiện tượng lỏng hóa đất. Mặc dù các vật liệu và phương pháp truyền thống nhằm giảm thiểu lỏng hóa đất cung cấp khả năng kháng lỏng hóa đáng kể, những phương pháp này dấy lên những lo ngại liên quan đến tính bền vững, tác động môi trường và những ảnh hưởng kinh tế. Trong bối cảnh này, việc sử dụng các vật liệu thải không truyền thống để nâng cao khả năng chống lỏng hóa nổi bật nhờ nhấn mạnh vào tính bền vững, hiệu quả chi phí và những thực hành thân thiện với môi trường. Các vật liệu thải khác nhau được sử dụng trong việc giảm thiểu lỏng hóa được thảo luận và so sánh về cơ chế cải thiện cơ bản của chúng. Bài báo cũng thảo luận về những vấn đề, thách thức và tiềm năng lợi ích của việc sử dụng những vật liệu thải này để thúc đẩy việc sử dụng chúng theo cách hiệu quả và tốt nhất có thể. Phần thảo luận kết luận rằng việc sử dụng vật liệu thải trong việc giảm thiểu lỏng hóa vượt trội hơn các phương pháp và vật liệu khác trên nhiều khía cạnh như tính sẵn có của vật liệu, chi phí và tính bền vững, cung cấp một con đường hứa hẹn để giải quyết các thách thức về lỏng hóa trong hiện tại và tương lai.

Từ khóa

#tính bền vững #lỏng hóa đất #vật liệu thải #giảm thiểu tác động môi trường #hiệu quả chi phí

Tài liệu tham khảo

Hazout L, El-Abidine Zitouni Z, Belkhatir M, Schanz T (2017) Evaluation of static liquefaction characteristics of saturated loose sand through the mean grain size and extreme grain sizes. Geotech Geol Eng 35:2079–2105. https://doi.org/10.1007/s10706-017-0230-z Shivaprakash BG, Dinesh SV (2017) Dynamic properties of sand–fines mixtures. Geotech Geol Eng 35:2327–2337. https://doi.org/10.1007/S10706-017-0247-3 Ahmed-W ElgamaI B, Zeghal M (1996) Liquefaction of reclaimed island in Kobe, Japan. J Geotech Eng 122:39–49. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:1(39) Zhao M, Liu G, Zhang C (2019) State-of-the-art of colloidal silica-based soil liquefaction mitigation: an emerging technique for ground improvement. Appl Sci 10:15. https://doi.org/10.3390/app10010015 Seed HB, Idriss IM (1967) Analysis of soil liquefaction: Niigata earthquake. J Soil Mech Found Div 93:83–108 Papathanassiou G, Ganas A, Valkaniotis S (2016) Recurrent liquefaction-induced failures triggered by 2014 Cephalonia, Greece earthquakes: spatial distribution and quantitative analysis of liquefaction potential. Eng Geol 200:18–30. https://doi.org/10.1016/Jenggeo.2015.11.011 Khosravi M, Tamura S, Boulanger RW (2015) Dynamic centrifuge tests on soft clay reinforced by soil-cement grids. J Geotech Geoenviron Eng. https://doi.org/10.1061/9780784479087.218 Cao Y, Kurimoto Y, Zhou YG et al (2023) Centrifuge model tests on liquefaction mitigation effect of soil–cement grids under large earthquake loadings. Bull Earthq Eng 21:4217–4236. https://doi.org/10.1007/S10518-023-01711-0/TABLES/3 DeJong JT, Mortensen BM, Martinez BC, Nelson DC (2010) Bio-mediated soil improvement. Ecol Eng 36:197–210. https://doi.org/10.1016/JECOLENG2008.12.029 Wang Z, Zhang N, Cai G (2017) Review of ground improvement using microbial induced carbonate precipitation (MICP). Mar Georesour Geotechnol 35:1135–1146. https://doi.org/10.1080/1064119X.2017.1297877 Benhelal E, Zahedi G, Shamsaei E, Bahadori A (2013) Global strategies and potentials to curb CO2 emissions in cement industry. J Clean Prod 51:142–161. https://doi.org/10.1016/JJCLEPRO.2012.10.049 Zhang X, Chen Y, Liu H et al (2020) Performance evaluation of a MICP-treated calcareous sandy foundation using shake table tests. Soil Dyn Earthq Eng 129:105959. https://doi.org/10.1016/jsoildyn.2019.105959 Gallagher PM, Pamuk A, Abdoun T (2007) Stabilization of liquefiable soils using colloidal silica grout. J Mater Civ Eng 19:33–40. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:1(33) Huang Y, Wen Z (2015) Recent developments of soil improvement methods for seismic liquefaction mitigation. Nat Hazards 76:1927–1938. https://doi.org/10.1007/s11069-014-1558-9 Sharma M, Satyam N, Reddy KR (2021) State of the art review of emerging and biogeotechnical methods for liquefaction mitigation in sands. J Hazard Toxic Radioact Waste 25:03120002. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000557 Bao X, Jin Z, Cui H et al (2019) Soil liquefaction mitigation in geotechnical engineering: an overview of recently developed methods. Soil Dyn Earthq Eng 120:273–291. https://doi.org/10.1016/j.soildyn.2019.01.020 Bhanwar P, Dave T (2021) A review on soil liquefaction mitigation techniques and its preliminary selection. Lect Notes Civ Eng 136:437–449. https://doi.org/10.1007/978-981-33-6444-8_39 Jakka RS, Datta M, Ramana GV (2010) Liquefaction behaviour of loose and compacted pond ash. Soil Dyn Earthq Eng 30:580–590. https://doi.org/10.1016/Jsoildyn.2010.01.015 Derakhshandi M, Rathje EM, Hazirbaba K, Mirhosseini SM (2008) The effect of plastic fines on the pore pressure generation characteristics of saturated sands. Soil Dyn Earthq Eng 28:376–386. https://doi.org/10.1016/jsoildyn.2007.07.002 Beroya MAA, Aydin A, Katzenbach R (2009) Insight into the effects of clay mineralogy on the cyclic behavior of silt-clay mixtures. Eng Geol 106:154–162. https://doi.org/10.1016/Jenggeo.2009.03.006 Keramatikerman M, Chegenizadeh A (2017) Effect of particle shape on monotonic liquefaction: natural and crushed sand. Exp Mech 57:1341–1348. https://doi.org/10.1007/S11340-017-0313-z Jakka RS (2007) Liquefaction resistance and dynamic properties of coal ash. Indian Institute of Technology, Delhi Liu J, Wang G, Kamai T (2011) Static liquefaction behavior of saturated fiber-reinforced sand in undrained ring-shear tests. Geotext Geomembr 29:462–471. https://doi.org/10.1016/jgeotexmem.2011.03.002 Youd TL, Idriss IM, Andrus RD et al (2001) Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils”. J Geotech Geoenviron Eng 127:297–313. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:3(284) Zachariah JP, Jakka RS (2021) Accounting for the uncertainties in the estimation of average shear wave velocity using VS-N correlations. Front Struct Civ Eng 15:1199–1208. https://doi.org/10.1007/s11709-021-0749-1 Zachariah JP, Jakka RS (2022) Reliable estimation of shear wave velocity using various VS—N correlations. Earthq Geotech Lect Notes Civ Eng 187:493–503. https://doi.org/10.1007/978-981-16-5669-9_40 Zachariah JP, Jakka RS (2021) Liquefaction potential of ash pond using SPT. Seism Hazards Risk Lect Notes Civ Eng 116:27–34. https://doi.org/10.1007/978-981-15-9976-7_3 Jakka RS, Ramaiah BJ, Ramana GV (2011) Dynamic characterization of settled pond ash using measured shear wave velocity (Vs) and SPT-N values: correlation between Vs & N. Int J Geotech Earthq Eng 2:83–97. https://doi.org/10.4018/jgee.2011010106 Roy N, Shiuly A, Sahu RB, Jakka RS (2018) Effect of uncertainty in VS–N correlations on seismic site response analysis. J Earth Syst Sci. https://doi.org/10.1007/s12040-018-1007-3 Towhata I (2008) Mitigation of liquefaction-induced damage. Geotech Earthq Eng 1:588–642. https://doi.org/10.1007/978-3-540-35783-4_26/COVER Hamada M (2014) Engineering for earthquake disaster mitigation. Springer, Berlin. https://doi.org/10.1007/978-4-431-54892-8 Sasaki Y, Taniguchi E (1982) Shaking table tests on gravel drains to prevent liquefaction of sand deposits. Soils Found 22(3):1–14. https://doi.org/10.3208/sandf1972.22.3_1 Howell R, Rathje EM, Kamai R, Boulanger R (2012) Centrifuge modeling of prefabricated vertical drains for liquefaction remediation. J Geotech Geoenviron Eng 138:262–271. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000604 Tiznado JC, Dashti S, Ledezma C et al (2020) Performance of embankments on liquefiable soils improved with dense granular columns: observations from case histories and centrifuge experiments. J Geotech Geoenviron Eng 146:04020073. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002309 Mayne PW, Jones JS, Dumas JC (1984) Ground response to dynamic compaction. J Geotech Eng 110:757–774. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:6(757) Ménard L, Broise Y (1975) Theoretical and practical aspect of dynamic consolidation. Geotechnique 15(1):3–18. https://doi.org/10.1680/geot.1975.25.1.3 Vidal H (1969) The principle of reinforced earth. Geotechnical special publication, pp 1–16 Altun S, Göktepe AB, Lav MA (2015) Liquefaction resistance of sand reinforced with geosynthetics. Geosynth Int 15(5):322–332. https://doi.org/10.1680/gein.2008.15.5.322 Christodoulou D, Lokkas P, Markou I et al (2021) Principles and developments in soil grouting: a historical review. WSEAS Trans Adv Eng Educ 18:175–191. https://doi.org/10.37394/232010.2021.18.18 Orense RP (2008) Liquefaction remediation by compaction grouting. In: Proceedings of 2008 NZSEE conference. Karol RH (2003) Chemical grouting and soil stabilization, revised and expanded. CRC Press, Boca Raton. https://doi.org/10.1201/9780203911815 Reddy KR, Stark TD, Marella A (2010) Beneficial use of shredded tires as drainage material in cover systems for abandoned Landfills. Pract Period Hazard Toxic Radioact Waste Manag 14:47–60. https://doi.org/10.1061/(ASCE)1090-025X(2010)14:1(47) Cecich V, Gonzales L, Hoisaeter A et al (1996) Use of shredded tires as lightweight backfill material for retaining structures. Waste Manag Res J Sustain Circ Econ 14:433–451. https://doi.org/10.1177/0734242X9601400503 Mashiri MS, Vinod JS, Sheikh MN, Carraro JAH (2018) Shear modulus of sand–tyre chip mixtures. Environ Geotech 5:336–344. https://doi.org/10.1680/jenge.16.00016 Neaz Sheikh M, Mashiri MS, Vinod JS, Tsang H-H (2013) Shear and compressibility behavior of sand–tire crumb mixtures. J Mater Civ Eng 25:1366–1374. https://doi.org/10.1061/(asce)mt.1943-5533.0000696 Madhusudhan BR, Boominathan A, Banerjee S (2020) Cyclic simple shear response of sand–rubber tire chip mixtures. Int J Geomech 20(9):04020136137 Amanta AS, Dasaka SM (2022) Dynamic characteristics and liquefaction behavior of sand–tire chip mixes. J Mater Civ Eng 34:04022269. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004423 Bosscher PJ, Edil TB, Kuraoka S (1997) Design of highway embankments using tire chips. J Geotech Geoenviron Eng 123:295–304. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(295) Otsubo M, Towhata I, Hayashida T, Liu B, Goto S (2016) Shaking table tests on liquefaction mitigation of embedded lifelines by backfilling with recycled materials. Soils Found 56(3):365–378. https://doi.org/10.1016/j.sandf.2016.04.004 Blewett J, Woodward PK (2001) A triaxial system for vibro-replacement liquefaction mitigation studies. J Ground Improv 5(2):75–83. https://doi.org/10.1680/GRIM.2001.5.2.75 Li B, Wang Y, Jin Q, Chen H (2019) Liquefaction characteristics of recycled concrete aggregates. Soil Dyn Earthq Eng 120(2019):85–96. https://doi.org/10.1016/Jsoildyn.2019.01.038 Rahman MA, Imteaz M, Arulrajah A, Disfani MM (2014) Suitability of recycled construction and demolition aggregates as alternative pipe backfilling materials. J Clean Prod 66:75–84. https://doi.org/10.1016/J.JCLEPRO.2013.11.005 Zubris KAV, Richards BK (2005) Synthetic fibers as an indicator of land application of sludge. Environ Pollut 138:201–211. https://doi.org/10.1016/JENVPOL.2005.04.013 Jambeck JR, Geyer R, Wilcox C et al (1979) (2015) Plastic waste inputs from land into the ocean. Science 347:768–771. https://doi.org/10.1126/SCIENCE.1260352 Jain A, Mittal S, Shukla SK (2023) Use of polyethylene terephthalate fibres for mitigating the liquefaction-induced failures. Geotext Geomembr 51:245–258. https://doi.org/10.1016/JGEOTEXMEM.2022.11.002 Alex K, Zachariah JP, Joseph M et al (2020) Compressive strength characteristics of stabilized rammed earthen paver blocks. Indian J Environ Prot 40:642–646 Jafari N, Noorzad R, Tanegonbadi B (2022) Liquefaction potential of reinforced sand with plastic wastes. Sci Iran 29:2850–2867. https://doi.org/10.2420/SCI.2022.57593.5318 Keramatikerman M, Chegenizadeh A, Nikraz H (2017) Experimental study on effect of fly ash on liquefaction resistance of sand. Soil Dyn Earthq Eng 93:1–6. https://doi.org/10.1016/J.SOILDYN.2016.11.012 Boominathan A, Hari S (2002) Liquefaction strength of fly ash reinforced with randomly distributed fibers. Soil Dyn Earthq Eng 22:1027–1033. https://doi.org/10.1016/S0267-7261(02)00127-6 Zand B, Tu W, Amaya PJ et al (2009) An experimental investigation on liquefaction potential and post-liquefaction shear strength of impounded fly ash. Fuel 88:1160–1166. https://doi.org/10.1016/Jfuel.2008.10.020 Abhijith L, Rangaswamy K, Varghese RM (2023) liquefaction susceptibility of bottom ash under cyclic loading. In: Proceedings of 17th symposium on earthquake engineering, vol 3, pp 655–666. https://doi.org/10.1007/978-981-99-1579-8_52 Zachariah JP, Jakka RS (2022) Utilization of bagasse fibre and ash—an open door for sustainable development: review and future insights. Earthq Geotech Lect Notes Civ Eng 187:505–517. https://doi.org/10.1007/978-981-16-5669-9_41 Noorzad R, Fardad Amini P (2014) Liquefaction resistance of Babolsar sand reinforced with randomly distributed fibers under cyclic loading. Soil Dyn Earthq Eng 66:281–292. https://doi.org/10.1016/j.soildyn.2014.07.011 Krishnaswamy NR, Thomas Isaac N (1995) Liquefaction analysis of saturated reinforced granular soils. J Geotech Eng 121:645–651. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:9(645) Sreya MV, Jayalekshmi BR, Venkataramana K (2022) Pore water pressure analysis in coir mat-reinforced soil incorporating soil-structure interaction. Int J Geosynth Ground Eng 8:1–21. https://doi.org/10.1007/S40891-022-00354-6/FIGURES/12 Veena U, James N (2023) Natural rubber latex treatment of sand: a novel remediation technique for soil liquefaction. Soil Dyn Earthq Eng 165:107661. https://doi.org/10.1016/J.SOILDYN.2022.107661 Karunaratne SW, John RS, Piyadasa KA (1971) use of natural rubber latex to improve seepage resistance of soils. Rubb Res Inst Ceylon 47:51–58 Buritatum A, Suddeepong A, Horpibulsuk S et al (2022) Improvement of tensile properties of cement-stabilized soil using natural rubber latex. J Mat Civil Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004173 Reddy KR, Yaghoubi P, Yukselen-Aksoy Y (2015) Effects of biochar amendment on geotechnical properties of landfill cover soil. Waste Manag Res J Sustain Circ Econ 33:524–532. https://doi.org/10.1177/0734242X15580192 Pardo GS, Orense RP, Sarmah AK (2018) Cyclic strength of sand mixed with biochar: Some preliminary results. Soils Found 58:241–247. https://doi.org/10.1016/J.SANDF.2017.11.004 Pardo GS, Sarmah AK, Orense RP (2019) Mechanism of improvement of biochar on shear strength and liquefaction resistance of sand. Geotechnique 69:471–480. https://doi.org/10.1680/JGEOT.17.P.040 Rodrigues De Amorim R, Orense RP, Pardo GS et al (2020) Liquefaction resistance of sand amended with biochar. Geotech Lett 10:290–295. https://doi.org/10.1680/JGELE.19.00029 Rasouli H, Fatahi B (2022) Liquefaction and post-liquefaction resistance of sand reinforced with recycled geofibre. Geotext Geomembr 50:69–81. https://doi.org/10.1016/J.GEOTEXMEM.2021.09.002 Ghiassian H, Ghazi F (2009) Liquefaction analysis of fine sand reinforced with carpet waste fibers under triaxial tests. In: 2nd International conference on new developments in soil mechanics and geotechnical engineering, pp 448–455 Zhang X, Zhu H, Jiao Z, Cen Z (2022) Lattice-shaped ground improvement by mixing soil and alkali-activated slag for liquefaction mitigation. Case Stud Constr Mater 17:e01445. https://doi.org/10.1016/j.cscm.2022.e01445 Zhu H, Zhang X, Cui J (2023) Enhancing the seismic performance of piles in liquefiable soils by slag powder. Case Stud Constr Mater 18:e01995. https://doi.org/10.1016/J.CSCM.2023.E01995 DeJong JT, Fritzges MB, Nüsslein K (2006) Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron Eng 132:1381–1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381) Krishnan J, Shukla S (2022) Shake table testing of liquefaction mitigation efficiency on pile foundations in sand stabilised with colloidal silica. Nat Hazards 111:2317–2341. https://doi.org/10.1007/S11069-021-05139-0/FIGURES/14 Ochoa-Cornejo F, Bobet A, Johnston CT et al (2016) Cyclic behavior and pore pressure generation in sands with laponite, a super-plastic nanoparticle. Soil Dyn Earthq Eng 88:265–279. https://doi.org/10.1016/J.SOILDYN.2016.06.008 Huang Y, Wang L (2016) Laboratory investigation of liquefaction mitigation in silty sand using nanoparticles. Eng Geol 204:23–32. https://doi.org/10.1016/J.ENGGEO.2016.01.015 Zeybek A, Madabhushi SPG (2017) Centrifuge testing to evaluate the liquefaction response of air-injected partially saturated soils beneath shallow foundations. Bull Earthq Eng 15:339–356. https://doi.org/10.1007/S10518-016-9968-6 He J, Chu J, Liu H (2014) Undrained shear strength of desaturated loose sand under monotonic shearing. Soils Found 54:910–916. https://doi.org/10.1016/J.SANDF.2014.06.020