State of ex situ conservation of landrace groups of 25 major crops

Nature Plants - Tập 8 Số 5 - Trang 491-499
Julián Ramírez-Villegas1, Colin K. Khoury1, Harold Achicanoy1, Maria Victoria Diaz1, Andres C. Mendez1, Chrystian C Sosa1, Zakaria Kehel2, Luigi Guarino3, Michael Abberton4, Jorrel Khalil Aunario5, Bashir Al Awar6, Juan C. Braga7, Ahmed Amri2, Noelle L. Anglin8, V. C. R. Azevedo8, Khadija Aziz2, Grace Lee Capilit5, Oswaldo Chávez8, Dmytro Chebotarov5, Denise E. Costich7, Daniel G. Debouck1, David Ellis8, Hamidou Falalou9, Albert Fiu10, Michel Edmond Ghanem11, Peter Giovannini3, Alphonse Goungoulou12, Badara Guèye4, Amal Ibn El Hobyb2, Ramni Jamnadass13, Chris S. Jones14, Sèdjro Bienvenu Kpeki12, Jae-Sung Lee5, Millicent D. Alexandrov Sanciangco5, Alice Muchugi14, Marie-Noëlle Ndjiondjop12, Olaniyi Oyatomi4, Thomas Payne7, Senthil Ramachandran15, Genoveva Rossel8, Nicolás Roux16, Max Ruas16, Carolina Sansaloni7, Julie Sardos16, Tri Setiyono17, Marimagne Tchamba4, Ines Van den houwe18, J. Alejandro Velazquez7, Ramaiah Venuprasad5, Peter Wenzl1, Mariana Yazbek6, Cristian Zavala7
1International Center for Tropical Agriculture (CIAT), Cali, Colombia
2International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
3Global Crop Diversity Trust, Bonn, Germany
4International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
5International Rice Research Institute (IRRI), Los Baños, Philippines
6International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
7International Maize and Wheat Improvement Center (CIMMYT), Texcoco, México
8International Potato Center (CIP), Lima, Peru
9International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Niamey, Niger
10Centre for Pacific Crops and Trees (CePaCT), Narere, Fiji
11Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
12Africa Rice Center (AfricaRice), Bouaké, Côte d’Ivoire
13World Agroforestry (ICRAF), Nairobi, Kenya
14International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
15International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
16Bioversity International, Montpellier, France
17Louisiana State University, Baton Rouge, LA USA
18Bioversity International, Leuven, Belgium

Tóm tắt

AbstractCrop landraces have unique local agroecological and societal functions and offer important genetic resources for plant breeding. Recognition of the value of landrace diversity and concern about its erosion on farms have led to sustained efforts to establish ex situ collections worldwide. The degree to which these efforts have succeeded in conserving landraces has not been comprehensively assessed. Here we modelled the potential distributions of eco-geographically distinguishable groups of landraces of 25 cereal, pulse and starchy root/tuber/fruit crops within their geographic regions of diversity. We then analysed the extent to which these landrace groups are represented in genebank collections, using geographic and ecological coverage metrics as a proxy for genetic diversity. We find that ex situ conservation of landrace groups is currently moderately comprehensive on average, with substantial variation among crops; a mean of 63% ± 12.6% of distributions is currently represented in genebanks. Breadfruit, bananas and plantains, lentils, common beans, chickpeas, barley and bread wheat landrace groups are among the most fully represented, whereas the largest conservation gaps persist for pearl millet, yams, finger millet, groundnut, potatoes and peas. Geographic regions prioritized for further collection of landrace groups for ex situ conservation include South Asia, the Mediterranean and West Asia, Mesoamerica, sub-Saharan Africa, the Andean mountains of South America and Central to East Asia. With further progress to fill these gaps, a high degree of representation of landrace group diversity in genebanks is feasible globally, thus fulfilling international targets for their ex situ conservation.

Từ khóa


Tài liệu tham khảo

Khoury, C. K. et al. Crop genetic erosion: understanding and responding to loss of crop diversity. New Phytol. 233, 84–118 (2021).

Jarvis, D. I. et al. A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proc. Natl Acad. Sci. USA 105, 5326–5331 (2008).

Allinne, C. et al. Role of seed flow on the pattern and dynamics of pearl millet (Pennisetum glaucum [L.] R. Br.) genetic diversity assessed by AFLP markers: a study in south-western Niger. Genetica 133, 167–178 (2007).

Rojas-Barrera, I. C. et al. Contemporary evolution of maize landraces and their wild relatives influenced by gene flow with modern maize varieties. Proc. Natl Acad. Sci. USA 116, 21302–21311 (2019).

Jarvis, D. I. & Hodgkin, T. Wild relatives and crop cultivars: detecting natural introgression and farmer selection of new genetic combinations in agroecosystems. Mol. Ecol. 8, S159–S173 (1999).

Mercer, K. L. & Perales, H. R. Evolutionary response of landraces to climate change in centers of crop diversity. Evol. Appl. 3, 480–493 (2010).

Gepts, P. Plant genetic resources conservation and utilization: the accomplishments and future of a societal insurance policy. Crop Sci. 46, 2278–2292 (2006).

Meyer, R. S., DuVal, A. E. & Jensen, H. R. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol. 196, 29–48 (2012).

Khoury, C. K. et al. Origins of food crops connect countries worldwide. Proc. R. Soc. B 283, 20160792 (2016).

Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture (Food and Agriculture Organization of the United Nations, 2010); https://www.fao.org/3/i1500e/i1500e.pdf

Convention on Biological Diversity. Strategic Plan for Biodiversity 2011-2020, including Aichi Biodiversity Targets (Convention on Biological Diversity, 2010); https://www.cbd.int/doc/strategic-plan/2011-2020/Aichi-Targets-EN.pdf

Sustainable development goals. United Nations https://sdgs.un.org/2030agenda (2015).

Ramirez‐Villegas, J. et al. A gap analysis modelling framework to prioritize collecting for ex situ conservation of crop landraces. Divers. Distrib. 26, 730–742 (2020).

Vavilov, N. I. Tzentry proiskhozhdeniya kulturnykh rastenii (The centres of origin of cultivated plants). Works Appl. Bot. Plant Breed. 16, 1–248 (1926).

Ladizinsky, G. Plant Evolution under Domestication (Kluwer Academic, 1998).

Halewood, M. et al. Germplasm acquisition and distribution by CGIAR genebanks. Plants 9, 1296 (2020).

Plucknett, D. L., Smith N. J. H., Williams, J. T. & Murthi-Anishetty, N. Gene Banks and the World’s Food (Princeton Univ. Press, 1987).

Thormann, I., Engels, J. M. M. & Halewood, M. Are the old International Board for Plant Genetic Resources (IBPGR) base collections available through the Plant Treaty’s multilateral system of access and benefit sharing? A review. Genet. Resour. Crop Evol. 66, 291–310 (2019).

Castañeda-Álvarez, N. P. et al. Global conservation priorities for crop wild relatives. Nat. Plants 2, 16022 (2016).

Khoury, C. K. et al. Crop wild relatives of the United States require urgent conservation action. Proc. Natl Acad. Sci. USA 117, 33351–33357 (2020).

The International Treaty on Plant Genetic Resources for Food and Agriculture (Food and Agriculture Organization of the United Nations, 2002).

Nagoya Protocol on Access and Benefit-sharing (Convention on Biological Diversity, 2011).

SDG Indicators, Metadata Repository, Goal 2. End hunger, achieve food security and improved nutrition and promote sustainable agriculture. United Nations https://unstats.un.org/sdgs/metadata/?Text=&Goal=2&Target (2021).

Scherr, S. J. & McNeely, J. A. Biodiversity conservation and agricultural sustainability: towards a new paradigm of ‘ecoagriculture’ landscapes. Phil. Trans. R. Soc. B 363, 477–494 (2008).

Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501 (2021).

Zeven, A. C. The traditional inexplicable replacement of seed and seed ware of landraces and cultivars: a review. Euphytica 110, 181–191 (1999).

Hanson, J. O., Rhodes, J. R., Riginos, C. & Fuller, R. A. Environmental and geographic variables are effective surrogates for genetic variation in conservation planning. Proc. Natl Acad. Sci. USA 114, 12755–12760 (2017).

Hoban, S., Kallow, S. & Trivedi, C. Implementing a new approach to effective conservation of genetic diversity, with ash (Fraxinus excelsior) in the UK as a case study. Biol. Conserv. 225, 10–21 (2018).

Sperling, L. The effect of the civil war on Rwandas bean seed systems and unusual bean diversity. Biodivers. Conserv. 10, 989–1010 (2001).

Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

Brush, S. B. In situ conservation of landraces in centers of crop diversity. Crop Sci. 35, 346 (1995).

Khoury, C. K. et al. Comprehensiveness of conservation of useful wild plants: an operational indicator for biodiversity and sustainable development targets. Ecol. Indic. 98, 420–429 (2019).

Genesys-PGR: a gateway to genetic resources. Global Crop Diversity Trust https://www.genesys-pgr.org/ (2021).

United Nations Food and Agriculture Organization World Information and Early Warning System on Plant Genetic Resources for Food and Agriculture. Food and Agricultural Organization of the United Nations http://www.fao.org/wiews/en/ (2021).

Ruas, M. et al. MGIS: managing banana (Musa spp.) genetic resources information and high-throughput genotyping data Database https://doi.org/10.1093/database/bax046 (2017).

National Plant Germplasm System, GRIN-Global Accessions. US Department of Agriculture Agricultural Research Service https://npgsweb.ars-grin.gov/gringlobal/search (2021).

Portal de Geoinformacion. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad http://www.conabio.gob.mx/informacion/gis/ (2021).

Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).

Reuter, H. I., Nelson, A. & Jarvis, A. An evaluation of void‐filling interpolation methods for SRTM data. Int. J. Geogr. Inf. Sci. 21, 983–1008 (2007).

Jarvis, A., Reuter, H. I., Nelson, A., & Guevara, E. Hole-filled Seamless SRTM Data V4 (International Center for Tropical Agriculture, 2008); https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/

Reba, M., Reitsma, F. & Seto, K. C. Spatializing 6,000 years of global urbanization from 3700 bc to ad 2000. Sci. Data 3, 160034 (2016).

Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 (Center for International Earth Science Information Network, 2018); https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11

Rivers + lake centerlines. Natural Earth https://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-rivers-lake-centerlines/ (2019).

Siebert, S., Henrich, V., Frenken, K., & Burke, J. Update of the Global Map of Irrigation Areas to Version 5: Project Report (Food and Agriculture Organization of the United Nations, 2013).

Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336 (2018).

Travel time to major cities. Publications Office of the European Commission Joint Research Centre—Institute for Environment and Sustainability https://op.europa.eu/en/publication-detail/-/publication/20a3a771-15b3-45ac-9606-7575b9df740a/language-en (2008).

Weidmann, N. B., Rød, J. K. & Cederman, L.-E. Representing ethnic groups in space: a new dataset. J. Peace Res. 47, 491–499 (2010).

You, L. et al. Spatial Production Allocation Model (SPAM) 2005 v3.2 (MapSPAM, 2019). https://www.mapspam.info/

Harlan, J. Crops and Man (American Society of Agronomy, 1975).

Jones, H. et al. Approaches and constraints of using existing landrace and extant plant material to understand agricultural spread in prehistory. Plant Genet. Resour. Charact. Util. 6, 98–112 (2008).

Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 26, 217–222 (2005).

Meyer, D., Leisch, F. & Hornik, K. The support vector machine under test. Neurocomputing 55, 169–186 (2003).

Guo, G., Wang, H., Bell, D., Bi, Y. & Greer, K. On the Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE Vol. 2888 (eds Meersman, R. et al.) 986–996 (Springer, 2003).

Dreiseitl, S. & Ohno-Machado, L. Logistic regression and artificial neural network classification models: a methodology review. J. Biomed. Inform. 35, 352–359 (2002).

Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).

Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography 40, 887–893 (2017).

Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).

Braunisch, V. et al. Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change. Ecography 36, 971–983 (2013).

Sayre, R. et al. A New Map of Global Ecological Land Units—An Ecophysiographic Stratification Approach (Association of American Geographers, 2014).

Senay, S. D., Worner, S. P. & Ikeda, T. Novel three-step pseudo-absence selection technique for improved species distribution modelling. PLoS ONE 8, e71218 (2013).

Lee, D. T. & Schachter, B. J. Two algorithms for constructing a Delaunay triangulation. Int. J. Comput. Inf. Sci. 9, 219–242 (1980).

Turner, R. deldir: Delaunay triangulation and Dirichlet (Voronoi) tessellation. R package version 0.1-16. https://cran.r-project.org/web/packages/deldir/deldir.pdf (2021).