Startup cathode potentials determine electron transfer behaviours of biocathodes catalysing CO2 reduction to CH4 in microbial electrosynthesis

Journal of CO2 Utilization - Tập 35 - Trang 169-175 - 2020
Jun Li1,2, Zhuo Li1,2, Shuai Xiao1,2, Qian Fu1,2, Hajime Kobayashi3, Liang Zhang1,2, Qiang Liao1,2, Xun Zhu1,2
1Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
2Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
3Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan

Tài liệu tham khảo

Nelabhotla, 2018, Electrochemically mediated CO2 reduction for bio-methane production: a review, Rev. Environ. Sci. Biotechnol., 17, 531, 10.1007/s11157-018-9470-5 Balat, 2008, Progress in bioethanol processing, Prog. Energy Combust. Sci., 34, 551, 10.1016/j.pecs.2007.11.001 Batlle-Vilanova, 2015, Deciphering the electron transfer mechanisms for biogas upgrading to biomethane within a mixed culture biocathode, RSC Adv., 5, 52243, 10.1039/C5RA09039C Kadier, 2016, Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals, Renew. Sustain. Energy Rev., 61, 501, 10.1016/j.rser.2016.04.017 Geppert, 2016, Bioelectrochemical power-to-gas: state of the art and future perspectives, Trends Biotechnol., 34, 879, 10.1016/j.tibtech.2016.08.010 Marshall, 2013, Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes, Environ. Sci. Technol., 47, 6023, 10.1021/es400341b Jansen, 2012, Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives, Int. J. Energy Res., 36, 809, 10.1002/er.1954 Thauer, 2008, Methanogenic archaea: ecologically relevant differences in energy conservation, Nat. Rev. Microbiol., 6, 579, 10.1038/nrmicro1931 Cheng, 2009, Direct biological conversion of electrical current into methane by electromethanogenesis, Environ. Sci. Technol., 43, 3953, 10.1021/es803531g Villano, 2010, Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture, Bioresour. Technol., 101, 3085, 10.1016/j.biortech.2009.12.077 Rabaey, 2010, Microbial electrosynthesis - revisiting the electrical route for microbial production, Nat. Rev. Microbiol., 8, 706, 10.1038/nrmicro2422 Aryal, 2017, An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide, Green Chem., 19, 5748, 10.1039/C7GC01801K Jafary, 2015, Biocathode in microbial electrolysis cell; present status and future prospects, Renew. Sustain. Energy Rev., 47, 23, 10.1016/j.rser.2015.03.003 Liu, 2014, Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater, Chem. Soc. Rev., 43, 7718, 10.1039/C3CS60130G Fu, 2015, Bioelectrochemical analyses of the development of a thermophilic biocathode catalyzing electromethanogenesis, Environ. Sci. Technol., 49, 1225, 10.1021/es5052233 Rosenbaum, 2011, Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved?, Bioresour. Technol., 102, 324, 10.1016/j.biortech.2010.07.008 Wagner, 2010, Optimal set anode potentials vary in bioelectrochemical systems, Environ. Sci. Technol., 44, 6036, 10.1021/es101013e Fu, 2018, Hybrid solar-to-methane conversion system with a Faradaic efficiency of up to 96%, Nano Energy, 53, 232, 10.1016/j.nanoen.2018.08.051 Zhen, 2018, A comprehensive comparison of five different carbon-based cathode materials in CO2 electromethanogenesis: Long-term performance, cell-electrode contact behaviors and extracellular electron transfer pathways, Bioresour. Technol., 266, 382, 10.1016/j.biortech.2018.06.101 Siegert, 2014, The presence of hydrogenotrophic methanogens in the inoculum improves methane gas production in microbial electrolysis cells, Front. Microbiol., 5, 778 Rozendal, 2008, Hydrogen production with a microbial biocathode, Environ. Sci. Technol., 42, 629, 10.1021/es071720+ Jeremiasse, 2010, Microbial electrolysis cell with a microbial biocathode, Bioelectrochemistry, 78, 39, 10.1016/j.bioelechem.2009.05.005 Ferry, 2010, How to make a living by exhaling methane, Annu. Rev. Microbiol., 64, 453, 10.1146/annurev.micro.112408.134051 Zinder, 1993 Beese-Vasbender, 2015, Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon, Bioelectrochemistry, 102, 50, 10.1016/j.bioelechem.2014.11.004 Mohanakrishna, 2016, Imperative role of applied potential and inorganic carbon source on acetate production through microbial electrosynthesis, J. Co2 Util., 15, 57, 10.1016/j.jcou.2016.03.003 Marshall, 2012, Electrosynthesis of commodity chemicals by an autotrophic microbial community, Appl. Environ. Microb., 78, 8412, 10.1128/AEM.02401-12 Xi, 2014, Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions, Environ. Sci. Technol., 48, 8911, 10.1021/es501979z Mohanakrishna, 2018, Impact of dissolved carbon dioxide concentration on the process parameters during its conversion to acetate through microbial electrosynthesis, React. Chem. Eng., 3, 371, 10.1039/C7RE00220C Jiang, 2014, Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells–microbial electrolysis cell (MFCs–MEC) coupled system, Appl. Biochem. Biotechnol., 172, 2720, 10.1007/s12010-013-0718-9 Van Eerten-Jansen, 2013, Microbial community analysis of a methane-producing biocathode in a bioelectrochemical system, Archaea, 2013, 10.1155/2013/481784 Baek, 2017, Development of biocathode during repeated cycles of bioelectrochemical conversion of carbon dioxide to methane, Bioresour. Technol., 241, 1201, 10.1016/j.biortech.2017.06.125 Xu, 2017, Impact of antibiotics pretreatment on bioelectrochemical CH4 production, ACS Sustain. Chem. Eng., 5, 8579, 10.1021/acssuschemeng.7b00923 Dykstra, 2017, Methanogenic biocathode microbial community development and the role of bacteria, Environ. Sci. Technol., 51, 5306, 10.1021/acs.est.6b04112 Cerrillo, 2017, Startup of electromethanogenic microbial electrolysis cells with two different biomass inocula for biogas upgrading, ACS Sustain. Chem. Eng., 5, 8852, 10.1021/acssuschemeng.7b01636 Zhen, 2015, Understanding methane bioelectrosynthesis from carbon dioxide in a two-chamber microbial electrolysis cells (MECs) containing a carbon biocathode, Bioresour. Technol., 186, 141, 10.1016/j.biortech.2015.03.064 Jourdin, 2014, A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis, J. Mater. Chem. A, 2, 13093, 10.1039/C4TA03101F Dong, 2018, Fluidized granular activated carbon electrode for efficient microbial electrosynthesis of acetate from carbon dioxide, Bioresour. Technol., 269, 203, 10.1016/j.biortech.2018.08.103 Yong, 2013, Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate, Int. J. Hydrogen Energy, 38, 3497, 10.1016/j.ijhydene.2012.12.107 Liu, 2017, Heat-treated stainless steel felt as a new cathode material in a methane-producing bioelectrochemical system, ACS Sustain. Chem. Eng., 5, 11346, 10.1021/acssuschemeng.7b02367 Mateos, 2019, Long-term open circuit microbial electrosynthesis system promotes methanogenesis, J. Energy Chem., 41, 3, 10.1016/j.jechem.2019.04.020 Sun, 2018, Improving production of volatile fatty acids and hydrogen from microalgae and rice residue: effects of physicochemical characteristics and mix ratios, Appl. Energy, 230, 1082, 10.1016/j.apenergy.2018.09.066 Rojas, 2018, Microbial electrosynthesis (MES) from CO2 is resilient to fluctuations in renewable energy supply, Energy Convers. Manage., 177, 272, 10.1016/j.enconman.2018.09.064 Lee, 2009, Fate of H2 in an upflow single-chamber microbial electrolysis cell using a metal-catalyst-free cathode, Environ. Sci. Technol., 43, 7971, 10.1021/es900204j Siegert, 2015, Methanobacterium dominates biocathodic archaeal communities in methanogenic microbial electrolysis cells, ACS Sustain. Chem. Eng., 3, 1668, 10.1021/acssuschemeng.5b00367 Kim, 2012