Startup cathode potentials determine electron transfer behaviours of biocathodes catalysing CO2 reduction to CH4 in microbial electrosynthesis
Tài liệu tham khảo
Nelabhotla, 2018, Electrochemically mediated CO2 reduction for bio-methane production: a review, Rev. Environ. Sci. Biotechnol., 17, 531, 10.1007/s11157-018-9470-5
Balat, 2008, Progress in bioethanol processing, Prog. Energy Combust. Sci., 34, 551, 10.1016/j.pecs.2007.11.001
Batlle-Vilanova, 2015, Deciphering the electron transfer mechanisms for biogas upgrading to biomethane within a mixed culture biocathode, RSC Adv., 5, 52243, 10.1039/C5RA09039C
Kadier, 2016, Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals, Renew. Sustain. Energy Rev., 61, 501, 10.1016/j.rser.2016.04.017
Geppert, 2016, Bioelectrochemical power-to-gas: state of the art and future perspectives, Trends Biotechnol., 34, 879, 10.1016/j.tibtech.2016.08.010
Marshall, 2013, Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes, Environ. Sci. Technol., 47, 6023, 10.1021/es400341b
Jansen, 2012, Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives, Int. J. Energy Res., 36, 809, 10.1002/er.1954
Thauer, 2008, Methanogenic archaea: ecologically relevant differences in energy conservation, Nat. Rev. Microbiol., 6, 579, 10.1038/nrmicro1931
Cheng, 2009, Direct biological conversion of electrical current into methane by electromethanogenesis, Environ. Sci. Technol., 43, 3953, 10.1021/es803531g
Villano, 2010, Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture, Bioresour. Technol., 101, 3085, 10.1016/j.biortech.2009.12.077
Rabaey, 2010, Microbial electrosynthesis - revisiting the electrical route for microbial production, Nat. Rev. Microbiol., 8, 706, 10.1038/nrmicro2422
Aryal, 2017, An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide, Green Chem., 19, 5748, 10.1039/C7GC01801K
Jafary, 2015, Biocathode in microbial electrolysis cell; present status and future prospects, Renew. Sustain. Energy Rev., 47, 23, 10.1016/j.rser.2015.03.003
Liu, 2014, Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater, Chem. Soc. Rev., 43, 7718, 10.1039/C3CS60130G
Fu, 2015, Bioelectrochemical analyses of the development of a thermophilic biocathode catalyzing electromethanogenesis, Environ. Sci. Technol., 49, 1225, 10.1021/es5052233
Rosenbaum, 2011, Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved?, Bioresour. Technol., 102, 324, 10.1016/j.biortech.2010.07.008
Wagner, 2010, Optimal set anode potentials vary in bioelectrochemical systems, Environ. Sci. Technol., 44, 6036, 10.1021/es101013e
Fu, 2018, Hybrid solar-to-methane conversion system with a Faradaic efficiency of up to 96%, Nano Energy, 53, 232, 10.1016/j.nanoen.2018.08.051
Zhen, 2018, A comprehensive comparison of five different carbon-based cathode materials in CO2 electromethanogenesis: Long-term performance, cell-electrode contact behaviors and extracellular electron transfer pathways, Bioresour. Technol., 266, 382, 10.1016/j.biortech.2018.06.101
Siegert, 2014, The presence of hydrogenotrophic methanogens in the inoculum improves methane gas production in microbial electrolysis cells, Front. Microbiol., 5, 778
Rozendal, 2008, Hydrogen production with a microbial biocathode, Environ. Sci. Technol., 42, 629, 10.1021/es071720+
Jeremiasse, 2010, Microbial electrolysis cell with a microbial biocathode, Bioelectrochemistry, 78, 39, 10.1016/j.bioelechem.2009.05.005
Ferry, 2010, How to make a living by exhaling methane, Annu. Rev. Microbiol., 64, 453, 10.1146/annurev.micro.112408.134051
Zinder, 1993
Beese-Vasbender, 2015, Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon, Bioelectrochemistry, 102, 50, 10.1016/j.bioelechem.2014.11.004
Mohanakrishna, 2016, Imperative role of applied potential and inorganic carbon source on acetate production through microbial electrosynthesis, J. Co2 Util., 15, 57, 10.1016/j.jcou.2016.03.003
Marshall, 2012, Electrosynthesis of commodity chemicals by an autotrophic microbial community, Appl. Environ. Microb., 78, 8412, 10.1128/AEM.02401-12
Xi, 2014, Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions, Environ. Sci. Technol., 48, 8911, 10.1021/es501979z
Mohanakrishna, 2018, Impact of dissolved carbon dioxide concentration on the process parameters during its conversion to acetate through microbial electrosynthesis, React. Chem. Eng., 3, 371, 10.1039/C7RE00220C
Jiang, 2014, Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells–microbial electrolysis cell (MFCs–MEC) coupled system, Appl. Biochem. Biotechnol., 172, 2720, 10.1007/s12010-013-0718-9
Van Eerten-Jansen, 2013, Microbial community analysis of a methane-producing biocathode in a bioelectrochemical system, Archaea, 2013, 10.1155/2013/481784
Baek, 2017, Development of biocathode during repeated cycles of bioelectrochemical conversion of carbon dioxide to methane, Bioresour. Technol., 241, 1201, 10.1016/j.biortech.2017.06.125
Xu, 2017, Impact of antibiotics pretreatment on bioelectrochemical CH4 production, ACS Sustain. Chem. Eng., 5, 8579, 10.1021/acssuschemeng.7b00923
Dykstra, 2017, Methanogenic biocathode microbial community development and the role of bacteria, Environ. Sci. Technol., 51, 5306, 10.1021/acs.est.6b04112
Cerrillo, 2017, Startup of electromethanogenic microbial electrolysis cells with two different biomass inocula for biogas upgrading, ACS Sustain. Chem. Eng., 5, 8852, 10.1021/acssuschemeng.7b01636
Zhen, 2015, Understanding methane bioelectrosynthesis from carbon dioxide in a two-chamber microbial electrolysis cells (MECs) containing a carbon biocathode, Bioresour. Technol., 186, 141, 10.1016/j.biortech.2015.03.064
Jourdin, 2014, A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis, J. Mater. Chem. A, 2, 13093, 10.1039/C4TA03101F
Dong, 2018, Fluidized granular activated carbon electrode for efficient microbial electrosynthesis of acetate from carbon dioxide, Bioresour. Technol., 269, 203, 10.1016/j.biortech.2018.08.103
Yong, 2013, Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate, Int. J. Hydrogen Energy, 38, 3497, 10.1016/j.ijhydene.2012.12.107
Liu, 2017, Heat-treated stainless steel felt as a new cathode material in a methane-producing bioelectrochemical system, ACS Sustain. Chem. Eng., 5, 11346, 10.1021/acssuschemeng.7b02367
Mateos, 2019, Long-term open circuit microbial electrosynthesis system promotes methanogenesis, J. Energy Chem., 41, 3, 10.1016/j.jechem.2019.04.020
Sun, 2018, Improving production of volatile fatty acids and hydrogen from microalgae and rice residue: effects of physicochemical characteristics and mix ratios, Appl. Energy, 230, 1082, 10.1016/j.apenergy.2018.09.066
Rojas, 2018, Microbial electrosynthesis (MES) from CO2 is resilient to fluctuations in renewable energy supply, Energy Convers. Manage., 177, 272, 10.1016/j.enconman.2018.09.064
Lee, 2009, Fate of H2 in an upflow single-chamber microbial electrolysis cell using a metal-catalyst-free cathode, Environ. Sci. Technol., 43, 7971, 10.1021/es900204j
Siegert, 2015, Methanobacterium dominates biocathodic archaeal communities in methanogenic microbial electrolysis cells, ACS Sustain. Chem. Eng., 3, 1668, 10.1021/acssuschemeng.5b00367
Kim, 2012