Giá Trị Tiêu Chuẩn Hóa Trong Khu Vực Hấp Thụ Cao Trên Chẩn Đoán Phát Xạ Positron Với 18F-FRP170 Làm Dấu Ấn Tế Bào Thiếu Oxy Tương Quan Với Áp Suất Oxy Trong Khối U Ở Glioblastoma

Takaaki Beppu1, Kazunori Terasaki2, Toshiaki Sasaki2, Shunrou Fujiwara1, Hideki Matsuura1, Kuniaki Ogasawara1, Koichiro Sera2, Noriyuki Yamada3, Noriyuki Uesugi3, Tamotsu Sugai3, Kohsuke Kudo4, Makoto Sasaki4, Shigeru Ehara5, Ren Iwata6, Yoshihiro Takai7
1Department of Neurosurgery, Iwate Medical University, Morioka, Japan
2Cyclotron Research Center, Iwate Medical University, Morioka, Japan
3Department of Clinical Pathology, Iwate Medical University, Morioka, Japan
4Institute for Biomedical Sciences, Iwate Medical University, Morioka, Japan
5Department of Radiology, Iwate Medical University, Morioka, Japan
6Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Sendai, Japan
7Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan

Tóm tắt

Mục tiêu của nghiên cứu này là làm rõ độ tin cậy của chẩn đoán phát xạ positron (PET) sử dụng một dấu ấn tế bào thiếu oxy mới, 1-(2-[18F]fluoro-1-[hydroxymethyl]ethoxy)methyl-2-nitroimidazole (18F-FRP170). Mười hai bệnh nhân có glioblastoma đã được thực hiện PET 18F-FRP170 trước khi cắt bỏ khối u. Giá trị hấp thu tiêu chuẩn trung bình (SUV) và SUV chuẩn hóa đã được tính toán tại các khu vực trong khối u thể hiện sự tích lũy cao (khu vực hấp thụ cao) và tương đối thấp (khu vực hấp thụ thấp) của 18F-FRP170. Ở những khu vực này, áp suất oxy trong khối u (tpO2) đã được đo bằng cách sử dụng các tiếp điểm vi trong quá trình cắt bỏ khối u. Mean tpO2 ở khu vực hấp thụ cao thấp hơn đáng kể so với khu vực hấp thụ thấp. Một mối tương quan tiêu cực đáng kể đã hiện rõ giữa SUV chuẩn hóa và tpO2 ở khu vực hấp thụ cao. Những phát hiện hiện tại cho thấy sự tích lũy cao trên PET 18F-FRP170 phản ánh các mô tế bào sống thiếu oxy trong glioblastoma.

Từ khóa

#PET #18F-FRP170 #glioblastoma #áp suất oxy trong khối u

Tài liệu tham khảo

Jensen RL (2009) Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target. J Neurooncol 92:317–335 Jensen RL (2006) Hypoxia in the tumorigenesis of gliomas and as a potential target for therapeutic measures. Neurosurg Focus 20:E24 Rich JN (2007) Cancer stem cells in radiation resistance. Cancer Res 67:8980–8984 Mendichovszky I, Jackson A (2011) Imaging hypoxia in gliomas. Br J Radiol 84(2):S145–S158 Eschmann SM, Paulsen F, Reimold M et al (2005) Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med 46:253–260 Kawai N, Maeda Y, Kudomi N et al (2011) Correlation of biological aggressiveness assessed by 11C-methionine PET and hypoxic burden assessed by 18F-fluoromisonidazole PET in newly diagnosed glioblastoma. Eur J Nucl Med Mol Imaging 38:441–450 Swanson KR, Chakraborty G, Wang CH et al (2009) Complementary but distinct roles for MRI and 18F-fluoromisonidazole PET in the assessment of human glioblastomas. J Nucl Med 50:36–44 Postema EJ, McEwan AJ, Riauka TA et al (2009) Initial results of hypoxia imaging using 1-alpha-D: -(5-deoxy-5-[18F]-fluoroarabinofuranosyl)-2-nitroimidazole (18F-FAZA). Eur J Nucl Med Mol Imaging 36:1565–1573 Sheehan JP, Popp B, Monteith S et al (2011) Trans sodium crocetinate: functional neuroimaging studies in a hypoxic brain tumor. J Neurosurg 115:749–753 Tateishi K, Tateishi U, Sato M et al (2013) Application of 62Cu-diacetyl-bis (N4-methylthiosemicarbazone) PET imaging to predict highly malignant tumor grades and hypoxia-inducible factor-1alpha expression in patients with glioma. AJNR Am J Neuroradiol 34:92–99 Kaneta T, Takai Y, Kagaya Y et al (2002) Imaging of ischemic but viable myocardium using a new 18F-labeled 2-nitroimidazole analog, 18F–FRP170. J Nucl Med 43:109–116 Ishikawa Y, Iwata R, Furumoto S, Takai Y (2005) Automated preparation of hypoxic cell marker [18F]FRP-170 by on-column hydrolysis. Appl Radiat Isot 62:705–710 Shibahara I, Kumabe T, Kanamori M et al (2010) Imaging of hypoxic lesions in patients with gliomas by using positron emission tomography with 1-(2-[18F] fluoro-1-[hydroxymethyl]ethoxy)methyl-2-nitroimidazole, a new 18F-labeled 2-nitroimidazole analog. J Neurosurg 113:358–368 Matsumoto K, Szajek L, Krishna MC et al (2007) The influence of tumor oxygenation on hypoxia imaging in murine squamous cell carcinoma using [64Cu]Cu-ATSM or [18F]Fluoromisonidazole positron emission tomography. Int J Oncol 30:873–881 Sorensen M, Horsman MR, Cumming P et al (2005) Effect of intratumoral heterogeneity in oxygenation status on FMISO PET, autoradiography, and electrode Po2 measurements in murine tumors. Int J Radiat Oncol Biol Phys 62:854–861 Mahy P, De Bast M, Gallez B et al (2003) In vivo colocalization of 2-nitroimidazole EF5 fluorescence intensity and electron paramagnetic resonance oximetry in mouse tumors. Radiother Oncol 67:53–61 Tran LB, Bol A, Labar D et al (2012) Hypoxia imaging with the nitroimidazole 18F-FAZA PET tracer: a comparison with OxyLite, EPR oximetry and 19F-MRI relaxometry. Radiother Oncol 105:29–35 Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270:1230–1237 Collingridge DR, Piepmeier JM, Rockwell S, Knisely JP (1999) Polarographic measurements of oxygen tension in human glioma and surrounding peritumoural brain tissue. Radiother Oncol 53:127–131 Kayama T, Yoshimoto T, Fujimoto S, Sakurai Y (1991) Intratumoral oxygen pressure in malignant brain tumor. J Neurosurg 74:55–59 Kaneta T, Takai Y, Iwata R et al (2007) Initial evaluation of dynamic human imaging using 18F-FRP170 as a new PET tracer for imaging hypoxia. Ann Nucl Med 21:101–107 Chapman JD (1979) Hypoxic sensitizers—implications for radiation therapy. N Engl J Med 301:1429–1432 Krohn KA, Link JM, Mason RP (2008) Molecular imaging of hypoxia. J Nucl Med 49(Suppl 2):129S–148S Beppu T, Kamada K, Yoshida Y et al (2002) Change of oxygen pressure in glioblastoma tissue under various conditions. J Neurooncol 58:47–52 Brown JM (1979) Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxygenation. Br J Radiol 52:650–656 Pistollato F, Abbadi S, Rampazzo E et al (2010) Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma. Stem Cells 28:851–862 Fischer I, Gagner JP, Law M, Newcomb EW, Zagzag D (2005) Angiogenesis in gliomas: biology and molecular pathophysiology. Brain Pathol 15:297–310 Reischl G, Dorow DS, Cullinane C et al (2007) Imaging of tumor hypoxia with [124I]IAZA in comparison with [18F]FMISO and [18F]FAZA-first small animal PET results. J Pharm Pharm Sic 10:203–211 Rampling R, Cruickshank G, Lewis AD et al (1994) Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumors. Int J Radiat Oncol Biol Phys 29:427–431 Piert M, Machulla H, Becker G et al (1999) Introducing fluorine-18 fluoromisonidazole positron emission tomography for the localisation and quantification of pig liver hypoxia. Eur J Nucl Med 26:95–109 Bartlett RM, Beattie BJ, Naryanan M et al (2012) Image-guided PO2 probe measurements correlated with parametric images derived from 18F-fluoromisonidazole small-animal PET data in rats. J Nucl Med 53:1608–1615